Advertisements
Advertisements
प्रश्न
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
y = ex + 1 y'' − y' = 0
उत्तर
We have,
y'' − y' = 0 ............(1)
Now,
y = ex +1
⇒ y'= ex
⇒ y'' = ex
Putting the above values in (1), we get
LHS = ex − ex = 0 = RHS
Thus, y = ex + 1 is the solution of the given differential equation.
APPEARS IN
संबंधित प्रश्न
Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].
Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x + y\frac{dy}{dx} = 0\]
|
\[y = \pm \sqrt{a^2 - x^2}\]
|
Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + e−x
Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex
Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\]
The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after `t` seconds.
Solve the following initial value problem:
\[x\frac{dy}{dx} + y = x \cos x + \sin x, y\left( \frac{\pi}{2} \right) = 1\]
Solve the following initial value problem:-
\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]
A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.
Which of the following differential equations has y = C1 ex + C2 e−x as the general solution?
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
`y=sqrt(a^2-x^2)` `x+y(dy/dx)=0`
Form the differential equation representing the family of curves y = a sin (x + b), where a, b are arbitrary constant.
Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2).
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = xn | `x^2(d^2y)/dx^2 - n xx (xdy)/dx + ny =0` |
Find the differential equation whose general solution is
x3 + y3 = 35ax.
Choose the correct alternative.
Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in
x2y dx – (x3 + y3) dy = 0
y dx – x dy + log x dx = 0
Select and write the correct alternative from the given option for the question
The differential equation of y = Ae5x + Be–5x is
Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`
Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0
Solve the following differential equation
`x^2 ("d"y)/("d"x)` = x2 + xy − y2
Choose the correct alternative:
General solution of `y - x ("d"y)/("d"x)` = 0 is
Solve the following differential equation
sec2 x tan y dx + sec2 y tan x dy = 0
Solution: sec2 x tan y dx + sec2 y tan x dy = 0
∴ `(sec^2x)/tanx "d"x + square` = 0
Integrating, we get
`square + int (sec^2y)/tany "d"y` = log c
Each of these integral is of the type
`int ("f'"(x))/("f"(x)) "d"x` = log |f(x)| + log c
∴ the general solution is
`square + log |tan y|` = log c
∴ log |tan x . tan y| = log c
`square`
This is the general solution.
An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.
Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.
Solve the differential equation `"dy"/"dx" + 2xy` = y