हिंदी

In the Following Verify that the Given Functions (Explicit Or Implicit) is a Solution of the Corresponding Differential Equation:- Y = Ex + 1 Y'' − Y' = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y = ex + 1            y'' − y' = 0

योग

उत्तर

We have,

y'' − y' = 0 ............(1)

Now,

y = ex +1

⇒ y'= ex

⇒ y'' = ex

Putting the above values in (1), we get

LHS = ex − ex = 0 = RHS

Thus, y = ex + 1 is the solution of the given differential equation.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Revision Exercise [पृष्ठ १४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Revision Exercise | Q 3.1 | पृष्ठ १४४

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

\[\frac{d^4 y}{d x^4} = \left\{ c + \left( \frac{dy}{dx} \right)^2 \right\}^{3/2}\]

Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].


Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x + y\frac{dy}{dx} = 0\]
\[y = \pm \sqrt{a^2 - x^2}\]

Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + ex


Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex


\[\frac{dy}{dx} = \tan^{- 1} x\]


\[\left( x^3 + x^2 + x + 1 \right)\frac{dy}{dx} = 2 x^2 + x\]

\[\frac{dy}{dx} = \frac{1 - \cos 2y}{1 + \cos 2y}\]

\[\frac{dy}{dx} = \left( e^x + 1 \right) y\]

Solve the differential equation \[\frac{dy}{dx} = e^{x + y} + x^2 e^y\].

\[y\sqrt{1 + x^2} + x\sqrt{1 + y^2}\frac{dy}{dx} = 0\]

\[\sqrt{1 + x^2 + y^2 + x^2 y^2} + xy\frac{dy}{dx} = 0\]

\[\frac{dy}{dx} = 2xy, y\left( 0 \right) = 1\]

Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\] 

 


The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after `t` seconds.


\[\frac{dy}{dx} = \left( x + y \right)^2\]

Solve the following initial value problem:
\[x\frac{dy}{dx} + y = x \cos x + \sin x, y\left( \frac{\pi}{2} \right) = 1\]


Solve the following initial value problem:-

\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]


A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.


Which of the following differential equations has y = C1 ex + C2 ex as the general solution?


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

`y=sqrt(a^2-x^2)`              `x+y(dy/dx)=0`


Form the differential equation representing the family of curves y = a sin (x + b), where ab are arbitrary constant.


Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2). 


In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
y = xn `x^2(d^2y)/dx^2 - n xx (xdy)/dx + ny =0`

Find the differential equation whose general solution is

x3 + y3 = 35ax.


Choose the correct alternative.

Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in


x2y dx – (x3 + y3) dy = 0


y dx – x dy + log x dx = 0


Select and write the correct alternative from the given option for the question

The differential equation of y = Ae5x + Be–5x is


Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`


Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0


Solve the following differential equation

`x^2  ("d"y)/("d"x)` = x2 + xy − y2 


Choose the correct alternative:

General solution of `y - x ("d"y)/("d"x)` = 0 is


Solve the following differential equation 

sec2 x tan y dx + sec2 y tan x dy = 0

Solution: sec2 x tan y dx + sec2 y tan x dy = 0

∴ `(sec^2x)/tanx  "d"x + square` = 0

Integrating, we get

`square + int (sec^2y)/tany  "d"y` = log c

Each of these integral is of the type

`int ("f'"(x))/("f"(x))  "d"x` = log |f(x)| + log c

∴ the general solution is

`square + log |tan y|` = log c

∴ log |tan x . tan y| = log c

`square`

This is the general solution.


An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.


Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.


Solve the differential equation `"dy"/"dx" + 2xy` = y


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×