हिंदी

Find the differential equation whose general solution is x3 + y3 = 35ax. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the differential equation whose general solution is

x3 + y3 = 35ax.

योग

उत्तर

x3 + y3 = 35ax ...(i)

Differentiating w.r.t. x, we get

`3x^2 + 3y^2 dy/dx = 35a` ...(ii)

Substituting (ii) in (i), we get

`x^3 + y^3 = (3x^2 + 3y^2 dy/dx)x`

∴ `x^3 + y^3 = 3x^3 + 3x*y^2 dy/dx`

∴ `2x^3 - y^3 +3xy^2dy/dx =0`, which is the required differential equation.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Differential Equation and Applications - Exercise 8.2 [पृष्ठ १६३]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 8 Differential Equation and Applications
Exercise 8.2 | Q 4 | पृष्ठ १६३

संबंधित प्रश्न

\[\frac{d^4 y}{d x^4} = \left\{ c + \left( \frac{dy}{dx} \right)^2 \right\}^{3/2}\]

Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.


Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].


Verify that y = cx + 2c2 is a solution of the differential equation 

\[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0\].

\[\frac{dy}{dx} = \cos^3 x \sin^2 x + x\sqrt{2x + 1}\]

\[\sqrt{a + x} dy + x\ dx = 0\]

\[\frac{dy}{dx} = \left( e^x + 1 \right) y\]

\[\frac{dy}{dx} = e^{x + y} + e^y x^3\]

\[y\sqrt{1 + x^2} + x\sqrt{1 + y^2}\frac{dy}{dx} = 0\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

\[\frac{dy}{dx} = y \tan 2x, y\left( 0 \right) = 2\] 

\[\frac{dy}{dx} = 2xy, y\left( 0 \right) = 1\]

\[2\left( y + 3 \right) - xy\frac{dy}{dx} = 0\], y(1) = −2

\[\cos^2 \left( x - 2y \right) = 1 - 2\frac{dy}{dx}\]

Solve the following initial value problem:-

\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]


At every point on a curve the slope is the sum of the abscissa and the product of the ordinate and the abscissa, and the curve passes through (0, 1). Find the equation of the curve.


The normal to a given curve at each point (x, y) on the curve passes through the point (3, 0). If the curve contains the point (3, 4), find its equation.


The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by


The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y \sin x = 1\], is


Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.


The price of six different commodities for years 2009 and year 2011 are as follows: 

Commodities A B C D E F

Price in 2009 (₹)

35 80 25 30 80 x
Price in 2011 (₹) 50 y 45 70 120 105

The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.


Solve the following differential equation.

`dy/dx + y` = 3


Choose the correct alternative.

The solution of `x dy/dx = y` log y is


Choose the correct alternative.

Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in


State whether the following is True or False:

The integrating factor of the differential equation `dy/dx - y = x` is e-x


Solve

`dy/dx + 2/ x y = x^2`


 `dy/dx = log x`


The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`


Solve: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`. [Hint: Substitute x + y = z]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×