Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[\frac{dy}{dx} = y \tan 2x, y\left( 0 \right) = 2\]
\[ \Rightarrow \frac{1}{y}dy = \tan 2x dx\]
Integrating both sides, we get
\[\int\frac{1}{y}dy = \int\tan 2x dx\]
\[ \Rightarrow \log \left| y \right| = \frac{1}{2}\log \left| \sec 2x \right| + \frac{1}{2}\log C\]
\[ \Rightarrow y^2 = C \sec 2x . . . . . \left( 1 \right)\]
It is given that at x = 0, y = 2 .
\[ \therefore C = 4\]
Substituting the value of C in (1), we get
\[ \therefore y^2 = \frac{4}{\cos 2x}\]
\[ \Rightarrow y = \frac{2}{\sqrt{\cos 2x}} \]
\[\text{ Hence, }y = \frac{2}{\sqrt{\cos 2x}} \text{ is the required solution }.\]
APPEARS IN
संबंधित प्रश्न
Solve the equation for x: `sin^(-1) 5/x + sin^(-1) 12/x = pi/2, x != 0`
Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x\frac{dy}{dx} = y\]
|
y = ax |
y ex/y dx = (xex/y + y) dy
Solve the following initial value problem:-
\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]
Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.
Find the equation of the curve such that the portion of the x-axis cut off between the origin and the tangent at a point is twice the abscissa and which passes through the point (1, 2).
Find the equation to the curve satisfying x (x + 1) \[\frac{dy}{dx} - y\] = x (x + 1) and passing through (1, 0).
A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.
The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.
Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.
The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when
Which of the following transformations reduce the differential equation \[\frac{dz}{dx} + \frac{z}{x}\log z = \frac{z}{x^2} \left( \log z \right)^2\] into the form \[\frac{du}{dx} + P\left( x \right) u = Q\left( x \right)\]
The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution
The integrating factor of the differential equation \[\left( 1 - y^2 \right)\frac{dx}{dy} + yx = ay\left( - 1 < y < 1 \right)\] is ______.
Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2).
Choose the correct option from the given alternatives:
The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of
Determine the order and degree of the following differential equations.
Solution | D.E |
y = aex + be−x | `(d^2y)/dx^2= 1` |
For each of the following differential equations find the particular solution.
`y (1 + logx)dx/dy - x log x = 0`,
when x=e, y = e2.
Solve the following differential equation.
x2y dx − (x3 + y3 ) dy = 0
Solve:
(x + y) dy = a2 dx
Solve the differential equation xdx + 2ydy = 0
For the differential equation, find the particular solution (x – y2x) dx – (y + x2y) dy = 0 when x = 2, y = 0
For the differential equation, find the particular solution
`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0
Solve the following differential equation y2dx + (xy + x2) dy = 0
The function y = ex is solution ______ of differential equation
Solve the following differential equation
sec2 x tan y dx + sec2 y tan x dy = 0
Solution: sec2 x tan y dx + sec2 y tan x dy = 0
∴ `(sec^2x)/tanx "d"x + square` = 0
Integrating, we get
`square + int (sec^2y)/tany "d"y` = log c
Each of these integral is of the type
`int ("f'"(x))/("f"(x)) "d"x` = log |f(x)| + log c
∴ the general solution is
`square + log |tan y|` = log c
∴ log |tan x . tan y| = log c
`square`
This is the general solution.
The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.
The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0