Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]
\[ \Rightarrow \frac{1}{y}dy = \frac{2 x^3}{x - 1}dx\]
Integrating both sides, we get
\[\int\frac{1}{y}dy = \int\frac{2 x^3}{x - 1}dx\]
\[ \Rightarrow \log \left| y \right| = 2\int\frac{x^3 - 1 + 1}{x - 1}dx\]
\[ \Rightarrow \log \left| y \right| = 2\int\frac{\left( x - 1 \right)\left( x^2 + x + 1 \right) + 1}{x - 1}dx\]
\[ \Rightarrow \log \left| y \right| = 2\int\left( x^2 + x + 1 \right)dx + 2\int\frac{1}{x - 1}dx\]
\[ \Rightarrow \log \left| y \right| = \frac{2}{3} x^3 + x^2 + 2x + \log \left| x - 1 \right| + C\]
\[\text{ Hence, }\log \left| y \right| = \frac{2}{3} x^3 + x^2 + 2x + \log \left| x - 1 \right| + \text{ C is the required solution }.\]
APPEARS IN
संबंधित प्रश्न
Verify that y2 = 4ax is a solution of the differential equation y = x \[\frac{dy}{dx} + a\frac{dx}{dy}\]
Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]
Differential equation \[\frac{dy}{dx} = y, y\left( 0 \right) = 1\]
Function y = ex
Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 0, y' \left( 0 \right) = 1\] Function y = sin x
(sin x + cos x) dy + (cos x − sin x) dx = 0
(1 − x2) dy + xy dx = xy2 dx
(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0
Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]
Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
(x2 − y2) dx − 2xy dy = 0
\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]
Solve the following initial value problem:-
\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]
Find the equation of the curve which passes through the origin and has the slope x + 3y− 1 at any point (x, y) on it.
Define a differential equation.
If sin x is an integrating factor of the differential equation \[\frac{dy}{dx} + Py = Q\], then write the value of P.
Which of the following transformations reduce the differential equation \[\frac{dz}{dx} + \frac{z}{x}\log z = \frac{z}{x^2} \left( \log z \right)^2\] into the form \[\frac{du}{dx} + P\left( x \right) u = Q\left( x \right)\]
What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?
If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
y = ex + 1 y'' − y' = 0
If a + ib = `("x" + "iy")/("x" - "iy"),` prove that `"a"^2 +"b"^2 = 1` and `"b"/"a" = (2"xy")/("x"^2 - "y"^2)`
For each of the following differential equations find the particular solution.
`y (1 + logx)dx/dy - x log x = 0`,
when x=e, y = e2.
Solve the following differential equation.
y2 dx + (xy + x2 ) dy = 0
Choose the correct alternative.
The solution of `x dy/dx = y` log y is
State whether the following is True or False:
The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.
Solve
`dy/dx + 2/ x y = x^2`
Solve the following differential equation y2dx + (xy + x2) dy = 0
The function y = ex is solution ______ of differential equation
The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`
The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.
There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?