हिंदी

Solve the following differential equation. y2 dx + (xy + x2 ) dy = 0 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following differential equation.

y2 dx + (xy + x2 ) dy = 0

योग

उत्तर

y2 dx + (xy + x2 ) dy = 0

∴ (xy + x2 ) dy = - y2 dx

∴`dy/dx = (-y^2)/(xy+x^2)`  ...(i)

Put y = tx  ...(ii)

Differentiating w.r.t. x, we get

`dy/dx = t + x dt/dx`  ...(iii)

Substituting (ii) and (iii) in (i), we get

`t + x dt/dx  = (-t^2x^2)/(x.tx+x^2)` 

∴`t + x dt/dx  = (-t^2x^2)/(tx^2+x^2)`

∴  `t + x dt/dx  = (-t^2x^2)/(x^2(t+1)`

∴  ` x dt/dx  = (-t^2)/(t+1)-t`

∴ ` x dt/dx  = (-t^2-t^2-t)/(t+1)`

∴ ` x dt/dx  = (-(2t^2+t))/(t+1)`

∴ `(t+1)/(2t^2+t)dt = - 1/x dx`

Integrating on both sides, we get

`int (t+1)/(2t^2+t)dt = -int1/xdx`

∴`int (2t + 1 - t)/(t(2t+1)) dt = - int1/xdx`

∴`int1/tdt-int  1/ (2t+1) dt = -int1/ x dx`

∴ log | t | - `1/2` log |2t + 1| = - log |x| + log |c|

∴ 2log| t | - log |2t + 1| = - 2log |x| + 2 log |c|

∴ `2log |y/x | -log |(2y)/x+ 1 |= - 2log |x| + 2 log |c|`

∴ 2log |y| - 2log |x| - log |2y + x| + log |x|

= -2log |x| + 2log |c|

∴ log |y2 | + log |x| = log |c2 | + log |2y + x|

∴ log |y2 x| = log | c2 (x + 2y)|

∴ xy 2 = c2 (x + 2y)

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Differential Equation and Applications - Exercise 8.4 [पृष्ठ १६७]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 8 Differential Equation and Applications
Exercise 8.4 | Q 1.2 | पृष्ठ १६७

संबंधित प्रश्न

\[\left( x + 2 \right)\frac{dy}{dx} = x^2 + 3x + 7\]

\[x\frac{dy}{dx} + 1 = 0 ; y \left( - 1 \right) = 0\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

\[\frac{dy}{dx} = e^{x + y} + e^{- x + y}\]

Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]

 


\[2x\frac{dy}{dx} = 5y, y\left( 1 \right) = 1\]

\[\frac{dy}{dx} = 1 + x^2 + y^2 + x^2 y^2 , y\left( 0 \right) = 1\]

Solve the differential equation \[x\frac{dy}{dx} + \cot y = 0\] given that \[y = \frac{\pi}{4}\], when \[x=\sqrt{2}\]


In a bank principal increases at the rate of r% per year. Find the value of r if ₹100 double itself in 10 years (loge 2 = 0.6931).


\[\frac{dy}{dx} = \sec\left( x + y \right)\]

\[\frac{dy}{dx} = \frac{y - x}{y + x}\]

Solve the following initial value problem:-

\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]


The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when


Which of the following transformations reduce the differential equation \[\frac{dz}{dx} + \frac{z}{x}\log z = \frac{z}{x^2} \left( \log z \right)^2\] into the form \[\frac{du}{dx} + P\left( x \right) u = Q\left( x \right)\]


The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution


Solve the following differential equation.

x2y dx − (x3 + y3 ) dy = 0


Solve the following differential equation.

`dy/dx + y` = 3


Solve the following differential equation.

dr + (2r)dθ= 8dθ


The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.


An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×