हिंदी

D Y D X = Y − X Y + X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{dy}{dx} = \frac{y - x}{y + x}\]
योग

उत्तर

We have, 
\[\frac{dy}{dx} = \frac{y - x}{y + x}\]
This is a homogeneous differential equation .
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{vx - x}{vx + x}\]
\[ \Rightarrow v + x\frac{dv}{dx} = \frac{x\left( v - 1 \right)}{x\left( v + 1 \right)}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{v - 1}{v + 1} - v\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{v - 1 - v^2 - v}{v + 1}\]
\[ \Rightarrow x\frac{dv}{dx} = - \frac{v^2 + 1}{v + 1}\]
\[ \Rightarrow \frac{v + 1}{v^2 + 1}dv = - \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{v + 1}{v^2 + 1}dv = - \int\frac{1}{x}dx\]
\[ \Rightarrow \int\frac{v}{v^2 + 1}dv + \int\frac{1}{v^2 + 1}dv = - \int\frac{1}{x}dx\]
\[ \Rightarrow \frac{1}{2}\int\frac{2v}{v^2 + 1}dv + \int\frac{1}{v^2 + 1}dv = - \int\frac{1}{x}dx\]
\[ \Rightarrow \frac{1}{2}\log \left| v^2 + 1 \right| + \tan^{- 1} v = - \log \left| x \right| + C\]
\[ \Rightarrow \frac{1}{2}\log \left| v^2 + 1 \right| + \log \left| x \right| + \tan^{- 1} v = C\]
\[ \Rightarrow \log \left| v^2 + 1 \right| + 2 \log \left| x \right| + 2 \tan^{- 1} v = 2C\]
\[ \Rightarrow \log \left| v^2 + 1 \right| + \log \left| x^2 \right| + 2 \tan^{- 1} v = 2C\]
\[ \Rightarrow \log \left| \left( v^2 + 1 \right) x^2 \right| + 2 \tan^{- 1} v = 2C \]
\[\text{ Substituting }v = \frac{y}{x},\text{ we get }\]
\[ \Rightarrow \log \left| \left( \frac{y^2}{x^2} + 1 \right) x^2 \right| + 2 \tan^{- 1} \frac{y}{x} = 2C\]
\[ \Rightarrow \log \left| \left( y^2 + x^2 \right) \right| + 2 \tan^{- 1} \frac{y}{x} = k .........\left(\text{where }k = 2C \right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.09 [पृष्ठ ८३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.09 | Q 2 | पृष्ठ ८३

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Assume that a rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.

 

Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.


Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]


Verify that y2 = 4a (x + a) is a solution of the differential equations
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} = y\]
y = ax

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x^3 \frac{d^2 y}{d x^2} = 1\]
\[y = ax + b + \frac{1}{2x}\]

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[y = \left( \frac{dy}{dx} \right)^2\]
\[y = \frac{1}{4} \left( x \pm a \right)^2\]

Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + ex


\[\left( x^2 + 1 \right)\frac{dy}{dx} = 1\]

C' (x) = 2 + 0.15 x ; C(0) = 100


\[\frac{dy}{dx} = \frac{1 + y^2}{y^3}\]

\[\frac{dy}{dx} = \left( e^x + 1 \right) y\]

(1 − x2) dy + xy dx = xy2 dx


\[x\sqrt{1 - y^2} dx + y\sqrt{1 - x^2} dy = 0\]

\[\frac{dy}{dx} = y \tan 2x, y\left( 0 \right) = 2\] 

If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).


\[\frac{dy}{dx}\cos\left( x - y \right) = 1\]

(x2 − y2) dx − 2xy dy = 0


3x2 dy = (3xy + y2) dx


(x + 2y) dx − (2x − y) dy = 0


In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]


The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.


Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\]  and tangent at any point of which makes an angle tan−1  \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.


The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).


Write the differential equation obtained by eliminating the arbitrary constant C in the equation x2 − y2 = C2.


The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is


The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by


The differential equation
\[\frac{dy}{dx} + Py = Q y^n , n > 2\] can be reduced to linear form by substituting


If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]


y2 dx + (x2 − xy + y2) dy = 0


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

`y=sqrt(a^2-x^2)`              `x+y(dy/dx)=0`


Determine the order and degree of the following differential equations.

Solution D.E.
ax2 + by2 = 5 `xy(d^2y)/dx^2+ x(dy/dx)^2 = y dy/dx`

Solve the following differential equation.

`dy/dx + y = e ^-x`


Solve: `("d"y)/("d"x) + 2/xy` = x2 


A solution of differential equation which can be obtained from the general solution by giving particular values to the arbitrary constant is called ______ solution


Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.


Solve the differential equation `"dy"/"dx" + 2xy` = y


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×