Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[\frac{dy}{dx} = \frac{y - x}{y + x}\]
This is a homogeneous differential equation .
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{vx - x}{vx + x}\]
\[ \Rightarrow v + x\frac{dv}{dx} = \frac{x\left( v - 1 \right)}{x\left( v + 1 \right)}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{v - 1}{v + 1} - v\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{v - 1 - v^2 - v}{v + 1}\]
\[ \Rightarrow x\frac{dv}{dx} = - \frac{v^2 + 1}{v + 1}\]
\[ \Rightarrow \frac{v + 1}{v^2 + 1}dv = - \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{v + 1}{v^2 + 1}dv = - \int\frac{1}{x}dx\]
\[ \Rightarrow \int\frac{v}{v^2 + 1}dv + \int\frac{1}{v^2 + 1}dv = - \int\frac{1}{x}dx\]
\[ \Rightarrow \frac{1}{2}\int\frac{2v}{v^2 + 1}dv + \int\frac{1}{v^2 + 1}dv = - \int\frac{1}{x}dx\]
\[ \Rightarrow \frac{1}{2}\log \left| v^2 + 1 \right| + \tan^{- 1} v = - \log \left| x \right| + C\]
\[ \Rightarrow \frac{1}{2}\log \left| v^2 + 1 \right| + \log \left| x \right| + \tan^{- 1} v = C\]
\[ \Rightarrow \log \left| v^2 + 1 \right| + 2 \log \left| x \right| + 2 \tan^{- 1} v = 2C\]
\[ \Rightarrow \log \left| v^2 + 1 \right| + \log \left| x^2 \right| + 2 \tan^{- 1} v = 2C\]
\[ \Rightarrow \log \left| \left( v^2 + 1 \right) x^2 \right| + 2 \tan^{- 1} v = 2C \]
\[\text{ Substituting }v = \frac{y}{x},\text{ we get }\]
\[ \Rightarrow \log \left| \left( \frac{y^2}{x^2} + 1 \right) x^2 \right| + 2 \tan^{- 1} \frac{y}{x} = 2C\]
\[ \Rightarrow \log \left| \left( y^2 + x^2 \right) \right| + 2 \tan^{- 1} \frac{y}{x} = k .........\left(\text{where }k = 2C \right)\]
APPEARS IN
संबंधित प्रश्न
Assume that a rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.
Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.
Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]
Verify that y2 = 4a (x + a) is a solution of the differential equations
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x\frac{dy}{dx} = y\]
|
y = ax |
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x^3 \frac{d^2 y}{d x^2} = 1\]
|
\[y = ax + b + \frac{1}{2x}\]
|
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[y = \left( \frac{dy}{dx} \right)^2\]
|
\[y = \frac{1}{4} \left( x \pm a \right)^2\]
|
Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + e−x
C' (x) = 2 + 0.15 x ; C(0) = 100
(1 − x2) dy + xy dx = xy2 dx
If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).
(x2 − y2) dx − 2xy dy = 0
3x2 dy = (3xy + y2) dx
(x + 2y) dx − (2x − y) dy = 0
In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]
The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.
Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\] and tangent at any point of which makes an angle tan−1 \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.
The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).
Write the differential equation obtained by eliminating the arbitrary constant C in the equation x2 − y2 = C2.
The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is
The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by
The differential equation
\[\frac{dy}{dx} + Py = Q y^n , n > 2\] can be reduced to linear form by substituting
If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]
y2 dx + (x2 − xy + y2) dy = 0
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
`y=sqrt(a^2-x^2)` `x+y(dy/dx)=0`
Determine the order and degree of the following differential equations.
Solution | D.E. |
ax2 + by2 = 5 | `xy(d^2y)/dx^2+ x(dy/dx)^2 = y dy/dx` |
Solve the following differential equation.
`dy/dx + y = e ^-x`
Solve: `("d"y)/("d"x) + 2/xy` = x2
A solution of differential equation which can be obtained from the general solution by giving particular values to the arbitrary constant is called ______ solution
Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.
Solve the differential equation `"dy"/"dx" + 2xy` = y