हिंदी

D Y D X Cos ( X − Y ) = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{dy}{dx}\cos\left( x - y \right) = 1\]
योग

उत्तर

We have, 
\[\frac{dy}{dx}\cos\left( x - y \right) = 1\]

\[ \Rightarrow \frac{dy}{dx} = \frac{1}{\cos\left( x - y \right)}\]

Putting x - y = v

\[ \Rightarrow 1 - \frac{dy}{dx} = \frac{dv}{dx}\]

\[ \Rightarrow \frac{dy}{dx} = 1 - \frac{dv}{dx}\]

\[ \therefore 1 - \frac{dv}{dx} = \frac{1}{\cos v}\]

\[ \Rightarrow \frac{dv}{dx} = 1 - \frac{1}{\cos v}\]

\[ \Rightarrow \frac{dv}{dx} = \frac{\cos v - 1}{\cos v}\]

\[ \Rightarrow \frac{\cos v}{\cos v - 1}dv = dx\]

Integrating both sides, we get

\[\int\frac{\cos v}{\cos v - 1}dv = \int dx\]

\[ \Rightarrow - \int\frac{\cos v\left( 1 + \cos v \right)}{1 - \cos^2 v}dv = \int dx\]

\[ \Rightarrow - \int\frac{\cos v\left( 1 + \cos v \right)}{\sin^2 v}dv = \int dx\]

\[ \Rightarrow - \int\left( \cot v\ cosec\ v + \cot^2 v \right)dv = \int dx\]

\[ \Rightarrow - \int\left( \cot v\ cosec\ v + {cosec}^2 v - 1 \right)dv = \int dx\]

\[ \Rightarrow - \left( - cosec\ v - \cot v - v \right) = x + C\]

\[ \Rightarrow cosec \left( x - y \right) + \cot \left( x - y \right) + x - y = x + C\]

\[ \Rightarrow cosec \left( x - y \right) + \cot \left( x - y \right) - y = C\]

\[ \Rightarrow \frac{1 + \cos \left( x - y \right)}{\sin \left( x - y \right)} - y = C\]

\[ \Rightarrow \cot\left( \frac{x - y}{2} \right) = y + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.08 [पृष्ठ ६६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.08 | Q 2 | पृष्ठ ६६

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

\[\sqrt[3]{\frac{d^2 y}{d x^2}} = \sqrt{\frac{dy}{dx}}\]

Verify that y2 = 4a (x + a) is a solution of the differential equations
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]


\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]

\[\left( x^3 + x^2 + x + 1 \right)\frac{dy}{dx} = 2 x^2 + x\]

\[5\frac{dy}{dx} = e^x y^4\]

x cos y dy = (xex log x + ex) dx


\[y\sqrt{1 + x^2} + x\sqrt{1 + y^2}\frac{dy}{dx} = 0\]

(y + xy) dx + (x − xy2) dy = 0


\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

\[xy\frac{dy}{dx} = \left( x + 2 \right)\left( y + 2 \right), y\left( 1 \right) = - 1\]

\[\left( x + y \right)^2 \frac{dy}{dx} = 1\]

\[x\frac{dy}{dx} = x + y\]

\[xy\frac{dy}{dx} = x^2 - y^2\]

3x2 dy = (3xy + y2) dx


(x + 2y) dx − (2x − y) dy = 0


The rate of growth of a population is proportional to the number present. If the population of a city doubled in the past 25 years, and the present population is 100000, when will the city have a population of 500000?


If the interest is compounded continuously at 6% per annum, how much worth Rs 1000 will be after 10 years? How long will it take to double Rs 1000?


Find the equation of the curve which passes through the point (2, 2) and satisfies the differential equation
\[y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}\]


Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\]  and tangent at any point of which makes an angle tan−1  \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.


Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\]  are rectangular hyperbola.


Find the equation of the curve passing through the point (0, 1) if the slope of the tangent to the curve at each of its point is equal to the sum of the abscissa and the product of the abscissa and the ordinate of the point.


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

`y=sqrt(a^2-x^2)`              `x+y(dy/dx)=0`


Form the differential equation of the family of circles having centre on y-axis and radius 3 unit.


Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.


Choose the correct option from the given alternatives:

The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of


For  the following differential equation find the particular solution.

`dy/ dx = (4x + y + 1),

when  y = 1, x = 0


Solve the following differential equation.

y dx + (x - y2 ) dy = 0


Solve the differential equation:

dr = a r dθ − θ dr


y2 dx + (xy + x2)dy = 0


Select and write the correct alternative from the given option for the question

Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in


Solve the following differential equation

`x^2  ("d"y)/("d"x)` = x2 + xy − y2 


Choose the correct alternative:

Differential equation of the function c + 4yx = 0 is


A solution of differential equation which can be obtained from the general solution by giving particular values to the arbitrary constant is called ______ solution


The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______


State whether the following statement is True or False:

The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x 


Solve the differential equation `"dy"/"dx" + 2xy` = y


Solution of `x("d"y)/("d"x) = y + x tan  y/x` is `sin(y/x)` = cx


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×