Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
Differential equation of the function c + 4yx = 0 is
विकल्प
`xy + ("d"y)/("d"x)` = 0
`x ("d"y)/("d"x) + y` = 0
`("d"y)/("d"x) - 4xy` =0
`x ("d"y)/("d"x) + 1` = 0
उत्तर
`x ("d"y)/("d"x) + y` = 0
APPEARS IN
संबंधित प्रश्न
Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x\frac{dy}{dx} = y\]
|
y = ax |
Differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} = 0, y \left( 0 \right) = 2, y'\left( 0 \right) = 1\]
Function y = ex + 1
Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\]
Find the equation of the curve that passes through the point (0, a) and is such that at any point (x, y) on it, the product of its slope and the ordinate is equal to the abscissa.
The equation of the curve whose slope is given by \[\frac{dy}{dx} = \frac{2y}{x}; x > 0, y > 0\] and which passes through the point (1, 1) is
The differential equation of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C\] is
Which of the following is the integrating factor of (x log x) \[\frac{dy}{dx} + y\] = 2 log x?
Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = xn | `x^2(d^2y)/dx^2 - n xx (xdy)/dx + ny =0` |
Solve the differential equation `("d"y)/("d"x) + y` = e−x
Solve the following differential equation
`yx ("d"y)/("d"x)` = x2 + 2y2
Solve the following differential equation
`x^2 ("d"y)/("d"x)` = x2 + xy − y2
The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______
The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`
Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.