हिंदी

The solution of differential equation x2d2ydx2 = 1 is ______ - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______

रिक्त स्थान भरें

उत्तर

y = 1 – log x

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1.8: Differential Equation and Applications - Q.2

संबंधित प्रश्न

Prove that:

`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`


\[\left( \frac{dy}{dx} \right)^2 + \frac{1}{dy/dx} = 2\]

Show that the function y = A cos 2x − B sin 2x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 4y = 0\].


tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y) 

 


\[\cos x \cos y\frac{dy}{dx} = - \sin x \sin y\]

\[\frac{dy}{dx} = e^{x + y} + e^{- x + y}\]

\[2x\frac{dy}{dx} = 3y, y\left( 1 \right) = 2\]

\[\frac{dy}{dx} = y \tan x, y\left( 0 \right) = 1\]

Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\] 

 


Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]


Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \log x, y\left( 1 \right) = 0\]


Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.


The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution


y2 dx + (x2 − xy + y2) dy = 0


Find the particular solution of the differential equation `"dy"/"dx" = "xy"/("x"^2+"y"^2),`given that y = 1 when x = 0


Solve the following differential equation.

(x2 − y2 ) dx + 2xy dy = 0


Solve the following differential equation

`y log y ("d"x)/("d"y) + x` = log y


Solve the following differential equation 

sec2 x tan y dx + sec2 y tan x dy = 0

Solution: sec2 x tan y dx + sec2 y tan x dy = 0

∴ `(sec^2x)/tanx  "d"x + square` = 0

Integrating, we get

`square + int (sec^2y)/tany  "d"y` = log c

Each of these integral is of the type

`int ("f'"(x))/("f"(x))  "d"x` = log |f(x)| + log c

∴ the general solution is

`square + log |tan y|` = log c

∴ log |tan x . tan y| = log c

`square`

This is the general solution.


There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?


`d/(dx)(tan^-1  (sqrt(1 + x^2) - 1)/x)` is equal to:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×