हिंदी

The function y = ex is solution ______ of differential equation - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

The function y = ex is solution  ______ of differential equation

रिक्त स्थान भरें

उत्तर

`("d"y)/("d"x) = y`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1.8: Differential Equation and Applications - Q.2

संबंधित प्रश्न

\[\left( \frac{dy}{dx} \right)^2 + \frac{1}{dy/dx} = 2\]

\[\frac{d^4 y}{d x^4} = \left\{ c + \left( \frac{dy}{dx} \right)^2 \right\}^{3/2}\]

\[\frac{dy}{dx} = \log x\]

\[\frac{dy}{dx} = \sin^2 y\]

\[\sqrt{1 + x^2} dy + \sqrt{1 + y^2} dx = 0\]

tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y) 

 


(y + xy) dx + (x − xy2) dy = 0


\[\frac{dy}{dx} = y \tan x, y\left( 0 \right) = 1\]

\[\frac{dy}{dx} = 2xy, y\left( 0 \right) = 1\]

The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after `t` seconds.


\[\frac{dy}{dx} + 1 = e^{x + y}\]

2xy dx + (x2 + 2y2) dy = 0


Solve the following initial value problem:-

\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]


In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]


Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .


Verify that the function y = e−3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + \frac{dy}{dx} - 6y = 0.\]


Find the differential equation whose general solution is

x3 + y3 = 35ax.


Solve the following differential equation.

y dx + (x - y2 ) dy = 0


Solve:

(x + y) dy = a2 dx


 `dy/dx = log x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×