हिंदी

√ 1 + X 2 D Y + √ 1 + Y 2 D X = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\sqrt{1 + x^2} dy + \sqrt{1 + y^2} dx = 0\]

उत्तर

We have,
\[\sqrt{1 + x^2} dy + \sqrt{1 + y^2} dx = 0\]
\[\sqrt{1 + x^2} dy = - \sqrt{1 + y^2} dx\]
\[\frac{1}{\sqrt{1 + y^2}}dy = - \frac{1}{\sqrt{1 + x^2}}dx\]
Integrating both sides, we get
\[\int\frac{1}{\sqrt{1 + y^2}}dy = - \int\frac{1}{\sqrt{1 + x^2}}dx\]
\[ \Rightarrow \log \left| y + \sqrt{1 + y^2} \right| = - \log \left| x + \sqrt{1 + x^2} \right| + \log C\]
\[ \Rightarrow \log \left| y + \sqrt{1 + y^2} \right| + \log \left| x + \sqrt{1 + x^2} \right| = \log C\]
\[ \Rightarrow \log \left| \left( y + \sqrt{1 + y^2} \right)\left( x + \sqrt{1 + x^2} \right) \right| = \log C\]
\[ \Rightarrow \left( y + \sqrt{1 + y^2} \right)\left( x + \sqrt{1 + x^2} \right) = C\]
\[\text{ Hence, }\log \left( y + \sqrt{1 + y^2} \right)\left( x + \sqrt{1 + x^2} \right) =\text{ C is the required differential equation .} \]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.07 [पृष्ठ ५५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.07 | Q 17 | पृष्ठ ५५

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

\[\frac{d^2 y}{d x^2} + 4y = 0\]

Assume that a rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.

 

Show that y = AeBx is a solution of the differential equation

\[\frac{d^2 y}{d x^2} = \frac{1}{y} \left( \frac{dy}{dx} \right)^2\]

\[\left( x + 2 \right)\frac{dy}{dx} = x^2 + 3x + 7\]

\[\frac{dy}{dx} = \log x\]

\[\frac{1}{x}\frac{dy}{dx} = \tan^{- 1} x, x \neq 0\]

\[\cos x\frac{dy}{dx} - \cos 2x = \cos 3x\]

x cos2 y  dx = y cos2 x dy


tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y) 

 


\[x\sqrt{1 - y^2} dx + y\sqrt{1 - x^2} dy = 0\]

dy + (x + 1) (y + 1) dx = 0


\[\frac{dy}{dx} = e^{x + y} + e^{- x + y}\]

\[2x\frac{dy}{dx} = 3y, y\left( 1 \right) = 2\]

\[xy\frac{dy}{dx} = y + 2, y\left( 2 \right) = 0\]

\[\frac{dy}{dx}\cos\left( x - y \right) = 1\]

\[\frac{dy}{dx} = \frac{\left( x - y \right) + 3}{2\left( x - y \right) + 5}\]

\[\cos^2 \left( x - 2y \right) = 1 - 2\frac{dy}{dx}\]

\[\frac{dy}{dx} = \tan\left( x + y \right)\]

\[2xy\frac{dy}{dx} = x^2 + y^2\]

y ex/y dx = (xex/y + y) dy


Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]


\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]

 

Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]


Solve the following initial value problem:-
\[\tan x\left( \frac{dy}{dx} \right) = 2x\tan x + x^2 - y; \tan x \neq 0\] given that y = 0 when \[x = \frac{\pi}{2}\]


If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.

 

Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\]  and tangent at any point of which makes an angle tan−1  \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.


The slope of the tangent at each point of a curve is equal to the sum of the coordinates of the point. Find the curve that passes through the origin.


Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].


Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.


Solve the following differential equation.

x2y dx − (x3 + y3 ) dy = 0


State whether the following is True or False:

The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.


 `dy/dx = log x`


y dx – x dy + log x dx = 0


Solve the differential equation `("d"y)/("d"x) + y` = e−x 


Solve the following differential equation y log y = `(log  y - x) ("d"y)/("d"x)`


Verify y = `a + b/x` is solution of `x(d^2y)/(dx^2) + 2 (dy)/(dx)` = 0

y = `a + b/x`

`(dy)/(dx) = square`

`(d^2y)/(dx^2) = square`

Consider `x(d^2y)/(dx^2) + 2(dy)/(dx)`

= `x square + 2 square`

= `square`

Hence y = `a + b/x` is solution of `square`


Solve the differential equation `"dy"/"dx" + 2xy` = y


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×