हिंदी

2 X Y D Y D X = X 2 + Y 2 - Mathematics

Advertisements
Advertisements

प्रश्न

\[2xy\frac{dy}{dx} = x^2 + y^2\]

उत्तर

We have,
\[2xy\frac{dy}{dx} = x^2 + y^2 \]
\[ \Rightarrow \frac{dy}{dx} = \frac{x^2 + y^2}{2xy}\]
This is a homogeneous differential equation . 
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{x^2 + v^2 x^2}{2 x^2 v}\]
\[ \Rightarrow v + x\frac{dv}{dx} = \frac{1 + v^2}{2v}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{1 + v^2}{2v} - v\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{1 - v^2}{2v}\]
\[ \Rightarrow \frac{2v}{1 - v^2}dv = \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{2v}{1 - v^2}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow - \log \left| 1 - v^2 \right| = \log \left| x \right| + \log C\]
\[ \Rightarrow - \log \left| \left( 1 - v^2 \right)x \right| = \log C\]
\[\text{ Putting }v = \frac{y}{x},\text{ we get }\]
\[ \Rightarrow - \log \left| \left( \frac{x^2 - y^2}{x^2} \right)x \right| = \log C\]
\[ \Rightarrow \left| \frac{x}{x^2 - y^2} \right| = C\]
\[ \Rightarrow \left| x \right| = C\left| \left( x^2 - y^2 \right) \right| \]
\[\text{ Hence, }\left| x \right| = C\left| \left( x^2 - y^2 \right) \right|\text{ is the required solution .}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.09 [पृष्ठ ८३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.09 | Q 7 | पृष्ठ ८३

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x + y\frac{dy}{dx} = 0\]
\[y = \pm \sqrt{a^2 - x^2}\]

Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2


\[\frac{dy}{dx} = x^2 + x - \frac{1}{x}, x \neq 0\]

\[\frac{dy}{dx} + 2x = e^{3x}\]

\[\left( x + 2 \right)\frac{dy}{dx} = x^2 + 3x + 7\]

\[\frac{dy}{dx} = \log x\]

\[\sqrt{1 - x^4} dy = x\ dx\]

\[\frac{dy}{dx} = x e^x - \frac{5}{2} + \cos^2 x\]

\[\sqrt{1 + x^2} dy + \sqrt{1 + y^2} dx = 0\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

\[\frac{dy}{dx} = \left( \cos^2 x - \sin^2 x \right) \cos^2 y\]

Solve the following differential equation: 
(xy2 + 2x) dx + (x2 y + 2y) dy = 0


Solve the following differential equation:
\[y e^\frac{x}{y} dx = \left( x e^\frac{x}{y} + y^2 \right)dy, y \neq 0\]

 


\[\frac{dy}{dx} = 2xy, y\left( 0 \right) = 1\]

\[\frac{dy}{dx} + 1 = e^{x + y}\]

(y2 − 2xy) dx = (x2 − 2xy) dy


3x2 dy = (3xy + y2) dx


\[x\frac{dy}{dx} = y - x \cos^2 \left( \frac{y}{x} \right)\]

Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \log x, y\left( 1 \right) = 0\]


If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.

 

Find the equation of the curve which passes through the origin and has the slope x + 3y− 1 at any point (x, y) on it.


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is


If a + ib = `("x" + "iy")/("x" - "iy"),` prove that `"a"^2 +"b"^2 = 1` and `"b"/"a" = (2"xy")/("x"^2 - "y"^2)`


Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.


Determine the order and degree of the following differential equations.

Solution D.E.
y = 1 − logx `x^2(d^2y)/dx^2 = 1`

Solve the following differential equation.

`dy/dx = x^2 y + y`


Solve the following differential equation.

`dy /dx +(x-2 y)/ (2x- y)= 0`


Solve the differential equation:

dr = a r dθ − θ dr


Select and write the correct alternative from the given option for the question

Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in


Solve: `("d"y)/("d"x) + 2/xy` = x2 


For the differential equation, find the particular solution

`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0


State whether the following statement is True or False:

The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x 


Find the particular solution of the following differential equation

`("d"y)/("d"x)` = e2y cos x, when x = `pi/6`, y = 0.

Solution: The given D.E. is `("d"y)/("d"x)` = e2y cos x

∴ `1/"e"^(2y)  "d"y` = cos x dx

Integrating, we get

`int square  "d"y` = cos x dx

∴ `("e"^(-2y))/(-2)` = sin x + c1

∴ e–2y = – 2sin x – 2c1

∴ `square` = c, where c = – 2c

This is general solution.

When x = `pi/6`, y = 0, we have

`"e"^0 + 2sin  pi/6` = c

∴ c = `square`

∴ particular solution is `square`


Solve `x^2 "dy"/"dx" - xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`


The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.


Solution of `x("d"y)/("d"x) = y + x tan  y/x` is `sin(y/x)` = cx


There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?


Solve the differential equation

`y (dy)/(dx) + x` = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×