Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[2xy\frac{dy}{dx} = x^2 + y^2 \]
\[ \Rightarrow \frac{dy}{dx} = \frac{x^2 + y^2}{2xy}\]
This is a homogeneous differential equation .
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{x^2 + v^2 x^2}{2 x^2 v}\]
\[ \Rightarrow v + x\frac{dv}{dx} = \frac{1 + v^2}{2v}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{1 + v^2}{2v} - v\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{1 - v^2}{2v}\]
\[ \Rightarrow \frac{2v}{1 - v^2}dv = \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{2v}{1 - v^2}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow - \log \left| 1 - v^2 \right| = \log \left| x \right| + \log C\]
\[ \Rightarrow - \log \left| \left( 1 - v^2 \right)x \right| = \log C\]
\[\text{ Putting }v = \frac{y}{x},\text{ we get }\]
\[ \Rightarrow - \log \left| \left( \frac{x^2 - y^2}{x^2} \right)x \right| = \log C\]
\[ \Rightarrow \left| \frac{x}{x^2 - y^2} \right| = C\]
\[ \Rightarrow \left| x \right| = C\left| \left( x^2 - y^2 \right) \right| \]
\[\text{ Hence, }\left| x \right| = C\left| \left( x^2 - y^2 \right) \right|\text{ is the required solution .}\]
APPEARS IN
संबंधित प्रश्न
Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x + y\frac{dy}{dx} = 0\]
|
\[y = \pm \sqrt{a^2 - x^2}\]
|
Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2
Solve the following differential equation:
(xy2 + 2x) dx + (x2 y + 2y) dy = 0
Solve the following differential equation:
\[y e^\frac{x}{y} dx = \left( x e^\frac{x}{y} + y^2 \right)dy, y \neq 0\]
(y2 − 2xy) dx = (x2 − 2xy) dy
3x2 dy = (3xy + y2) dx
Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \log x, y\left( 1 \right) = 0\]
If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.
Find the equation of the curve which passes through the origin and has the slope x + 3y− 1 at any point (x, y) on it.
Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is
If a + ib = `("x" + "iy")/("x" - "iy"),` prove that `"a"^2 +"b"^2 = 1` and `"b"/"a" = (2"xy")/("x"^2 - "y"^2)`
Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.
Determine the order and degree of the following differential equations.
Solution | D.E. |
y = 1 − logx | `x^2(d^2y)/dx^2 = 1` |
Solve the following differential equation.
`dy/dx = x^2 y + y`
Solve the following differential equation.
`dy /dx +(x-2 y)/ (2x- y)= 0`
Solve the differential equation:
dr = a r dθ − θ dr
Select and write the correct alternative from the given option for the question
Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in
Solve: `("d"y)/("d"x) + 2/xy` = x2
For the differential equation, find the particular solution
`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0
State whether the following statement is True or False:
The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x
Find the particular solution of the following differential equation
`("d"y)/("d"x)` = e2y cos x, when x = `pi/6`, y = 0.
Solution: The given D.E. is `("d"y)/("d"x)` = e2y cos x
∴ `1/"e"^(2y) "d"y` = cos x dx
Integrating, we get
`int square "d"y` = cos x dx
∴ `("e"^(-2y))/(-2)` = sin x + c1
∴ e–2y = – 2sin x – 2c1
∴ `square` = c, where c = – 2c1
This is general solution.
When x = `pi/6`, y = 0, we have
`"e"^0 + 2sin pi/6` = c
∴ c = `square`
∴ particular solution is `square`
Solve `x^2 "dy"/"dx" - xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`
The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.
Solution of `x("d"y)/("d"x) = y + x tan y/x` is `sin(y/x)` = cx
There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?
Solve the differential equation
`y (dy)/(dx) + x` = 0