हिंदी

Determine the order and degree of the following differential equations. Solution D.E. y = 1 − logx x2d2ydx2=1 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Determine the order and degree of the following differential equations.

Solution D.E.
y = 1 − logx `x^2(d^2y)/dx^2 = 1`
योग

उत्तर

y = 1 – log x

Differentiating w.r.t. x, we get

`dy/dx = -1/x`

Again, differentiating w.r.t. x, we get

`(d^2y)/dx^2 = 1/x^2`

∴ `x^2(d^2y)/dx^2 = 1`

∴  Given function is a solution of the given differential equation.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Differential Equation and Applications - Exercise 8.1 [पृष्ठ १६२]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 8 Differential Equation and Applications
Exercise 8.1 | Q 2.4 | पृष्ठ १६२

संबंधित प्रश्न

Show that the differential equation of which y = 2(x2 − 1) + \[c e^{- x^2}\] is a solution, is \[\frac{dy}{dx} + 2xy = 4 x^3\]


Verify that y = cx + 2c2 is a solution of the differential equation 

\[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0\].

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} = y\]
y = ax

\[\left( x^2 + 1 \right)\frac{dy}{dx} = 1\]

\[\sin^4 x\frac{dy}{dx} = \cos x\]

\[\frac{dy}{dx} + \frac{1 + y^2}{y} = 0\]

y (1 + ex) dy = (y + 1) ex dx


\[2x\frac{dy}{dx} = 3y, y\left( 1 \right) = 2\]

Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.


\[\frac{dy}{dx} = \left( x + y \right)^2\]

y ex/y dx = (xex/y + y) dy


(y2 − 2xy) dx = (x2 − 2xy) dy


Solve the following differential equation.

`(dθ)/dt  = − k (θ − θ_0)`


For each of the following differential equations find the particular solution.

(x − y2 x) dx − (y + x2 y) dy = 0, when x = 2, y = 0


For each of the following differential equations find the particular solution.

`y (1 + logx)dx/dy - x log x = 0`,

when x=e, y = e2.


Solve the following differential equation.

x2y dx − (x3 + y3 ) dy = 0


State whether the following is True or False:

The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.


Solve the following differential equation `("d"y)/("d"x)` = cos(x + y)

Solution: `("d"y)/("d"x)` = cos(x + y)    ......(1)

Put `square`

∴ `1 + ("d"y)/("d"x) = "dv"/("d"x)`

∴ `("d"y)/("d"x) = "dv"/("d"x) - 1`

∴ (1) becomes `"dv"/("d"x) - 1` = cos v

∴ `"dv"/("d"x)` = 1 + cos v

∴ `square` dv = dx

Integrating, we get

`int 1/(1 + cos "v")  "d"v = int  "d"x`

∴ `int 1/(2cos^2 ("v"/2))  "dv" = int  "d"x`

∴ `1/2 int square  "dv" = int  "d"x`

∴ `1/2* (tan("v"/2))/(1/2)` = x + c

∴ `square` = x + c


The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.


Solve the differential equation `"dy"/"dx" + 2xy` = y


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×