Advertisements
Advertisements
प्रश्न
Show that the differential equation of which y = 2(x2 − 1) + \[c e^{- x^2}\] is a solution, is \[\frac{dy}{dx} + 2xy = 4 x^3\]
उत्तर
The given equation is \[y = 2\left( x^2 - 1 \right) + c e^{- x^2}\] ...(1)
where c is a parameter.
As this equation has one arbitrary constant, we shall get a differential equation of first order.
Differentiating equation (1) with respect to x, we get
\[\frac{dy}{dx} = 2\left( 2x \right) + c e^{- x^2} ( - 2x)\]
\[ \Rightarrow \frac{dy}{dx} = 4x - 2xc e^{- x^2} . . . \left( 2 \right)\]
From (1) and (2), we get
\[\Rightarrow \frac{dy}{dx} = 4x - 2xy + 4 x^3 - 4x\]
\[ \Rightarrow \frac{dy}{dx} + 2xy = 4 x^3\]
Hence,
\[y = 2\left( x^2 - 1 \right) + c e^{- x^2}\] is the solution to the differential equation \[\frac{dy}{dx} + 2xy = 4 x^3\]
APPEARS IN
संबंधित प्रश्न
Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]
Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[y = \left( \frac{dy}{dx} \right)^2\]
|
\[y = \frac{1}{4} \left( x \pm a \right)^2\]
|
Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2
(sin x + cos x) dy + (cos x − sin x) dx = 0
C' (x) = 2 + 0.15 x ; C(0) = 100
dy + (x + 1) (y + 1) dx = 0
Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\]
If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).
(x + y) (dx − dy) = dx + dy
3x2 dy = (3xy + y2) dx
\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + y \tan x = 2x + x^2 \tan x, y\left( 0 \right) = 1\]
Solve the following initial value problem:-
\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]
A population grows at the rate of 5% per year. How long does it take for the population to double?
The population of a city increases at a rate proportional to the number of inhabitants present at any time t. If the population of the city was 200000 in 1990 and 250000 in 2000, what will be the population in 2010?
The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.
Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\] and tangent at any point of which makes an angle tan−1 \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.
Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.
Find the equation to the curve satisfying x (x + 1) \[\frac{dy}{dx} - y\] = x (x + 1) and passing through (1, 0).
A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.
The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).
Verify that the function y = e−3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + \frac{dy}{dx} - 6y = 0.\]
Find the differential equation whose general solution is
x3 + y3 = 35ax.
Solve the following differential equation.
`(x + y) dy/dx = 1`
Solve the following differential equation.
`(x + a) dy/dx = – y + a`
The solution of `dy/ dx` = 1 is ______
Choose the correct alternative.
Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in
Integrating factor of the differential equation `"dy"/"dx" - y` = cos x is ex.
If `y = log_2 log_2(x)` then `(dy)/(dx)` =
Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.