हिंदी

( X + 2 ) D Y D X = X 2 + 3 X + 7 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\left( x + 2 \right)\frac{dy}{dx} = x^2 + 3x + 7\]
योग

उत्तर

We have, 
\[\left( x + 2 \right)\frac{dy}{dx} = x^2 + 3x + 7\]
\[ \Rightarrow \frac{dy}{dx} = \frac{x^2 + 3x + 7}{x + 2}\]
\[ \Rightarrow dy = \left( \frac{x^2 + 3x + 7}{x + 2} \right)dx\]
Integrating both sides, we get
\[\int dy = \int\left( \frac{x^2 + 3x + 7}{x + 2} \right)dx\]
\[ \Rightarrow \int dy = \int\left( \frac{x^2 + 3x + 2 + 5}{x + 2} \right)dx\]
\[ \Rightarrow \int dy = \int\left[ \frac{\left( x + 2 \right)\left( x + 1 \right) + 5}{x + 2} \right]dx\]
\[ \Rightarrow \int dy = \int\left( x + 1 + \frac{5}{x + 2} \right)dx\]
\[ \Rightarrow y = \frac{x^2}{2} + x + 5 \log\left| x + 2 \right| + C\]
\[\text{ So, } y = \frac{x^2}{2} + x + 5 \log\left| x + 2 \right| +\text{C is defined for all } x \in R\text{ except }x = - 2 . \]
\[\text{Hence, }y = \frac{x^2}{2} + x + 5 \log\left| x + 2 \right| + \text{C, where }x \in R - \left\{ 2 \right\},\text{ is the solution to the given differential equation.}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.05 [पृष्ठ ३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.05 | Q 6 | पृष्ठ ३४

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.


Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.


Verify that y2 = 4ax is a solution of the differential equation y = x \[\frac{dy}{dx} + a\frac{dx}{dy}\]


Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]

 


Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.


Verify that \[y = e^{m \cos^{- 1} x}\] satisfies the differential equation \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - m^2 y = 0\]


Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]

 


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[y = \left( \frac{dy}{dx} \right)^2\]
\[y = \frac{1}{4} \left( x \pm a \right)^2\]

Differential equation \[\frac{dy}{dx} = y, y\left( 0 \right) = 1\]
Function y = ex


\[\frac{dy}{dx} + 2x = e^{3x}\]

\[\left( x^2 + 1 \right)\frac{dy}{dx} = 1\]

\[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]

\[\frac{1}{x}\frac{dy}{dx} = \tan^{- 1} x, x \neq 0\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

\[x\sqrt{1 - y^2} dx + y\sqrt{1 - x^2} dy = 0\]

Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]


Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.


\[\left( x + y \right)^2 \frac{dy}{dx} = 1\]

x2 dy + y (x + y) dx = 0


\[\frac{dy}{dx} = \frac{y^2 - x^2}{2xy}\]

\[\frac{dy}{dx} = \frac{x + y}{x - y}\]

\[2xy\frac{dy}{dx} = x^2 + y^2\]

Solve the following initial value problem:-

\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]


A population grows at the rate of 5% per year. How long does it take for the population to double?


The population of a city increases at a rate proportional to the number of inhabitants present at any time t. If the population of the city was 200000 in 1990 and 250000 in 2000, what will be the population in 2010?


A bank pays interest by continuous compounding, that is, by treating the interest rate as the instantaneous rate of change of principal. Suppose in an account interest accrues at 8% per year, compounded continuously. Calculate the percentage increase in such an account over one year.


A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.


Find the equation of the curve which passes through the point (1, 2) and the distance between the foot of the ordinate of the point of contact and the point of intersection of the tangent with x-axis is twice the abscissa of the point of contact.


The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).


The x-intercept of the tangent line to a curve is equal to the ordinate of the point of contact. Find the particular curve through the point (1, 1).


The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is


The equation of the curve whose slope is given by \[\frac{dy}{dx} = \frac{2y}{x}; x > 0, y > 0\] and which passes through the point (1, 1) is


Form the differential equation of the family of circles having centre on y-axis and radius 3 unit.


The price of six different commodities for years 2009 and year 2011 are as follows: 

Commodities A B C D E F

Price in 2009 (₹)

35 80 25 30 80 x
Price in 2011 (₹) 50 y 45 70 120 105

The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.


Choose the correct option from the given alternatives:

The solution of `1/"x" * "dy"/"dx" = tan^-1 "x"` is


Solve the following differential equation.

`xy  dy/dx = x^2 + 2y^2`


Choose the correct alternative:

Solution of the equation `x("d"y)/("d"x)` = y log y is


State whether the following statement is True or False:

The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x 


Solve the following differential equation

`y log y ("d"x)/("d"y) + x` = log y


If `y = log_2 log_2(x)` then `(dy)/(dx)` =


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×