Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{2 \sin^2 \frac{x}{2}}{2 \cos^2 \frac{x}{2}}\]
\[ \Rightarrow \frac{dy}{dx} = \tan^2 \frac{x}{2}\]
\[ \Rightarrow dy = \left( \tan^2 \frac{x}{2} \right)dx\]
Integrating both sides, we get
\[\int dy = \int\left( \tan^2 \frac{x}{2} \right)dx\]
\[ \Rightarrow \int dy = \int\left( \sec^2 \frac{x}{2} - 1 \right)dx\]
\[ \Rightarrow y = 2 \tan \frac{x}{2} - x + C\]
\[\text{ So, } y = 2 \tan \frac{x}{2} - x + \text{ C is defined for all }x \in R . \]
\[\text{ Hence, }y = 2 \tan \frac{x}{2} - x +\text{ C, where }x \in R, \text{ is the solution to the given differential equation } .\]
APPEARS IN
संबंधित प्रश्न
Verify that y = 4 sin 3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 9y = 0\]
Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]
Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.
Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex
C' (x) = 2 + 0.15 x ; C(0) = 100
Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]
y ex/y dx = (xex/y + y) dy
(x + 2y) dx − (2x − y) dy = 0
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.
Solve the following initial value problem:-
\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]
Solve the following initial value problem:-
\[\tan x\left( \frac{dy}{dx} \right) = 2x\tan x + x^2 - y; \tan x \neq 0\] given that y = 0 when \[x = \frac{\pi}{2}\]
The population of a city increases at a rate proportional to the number of inhabitants present at any time t. If the population of the city was 200000 in 1990 and 250000 in 2000, what will be the population in 2010?
Find the equation of the curve which passes through the point (2, 2) and satisfies the differential equation
\[y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}\]
Find the equation of the curve such that the portion of the x-axis cut off between the origin and the tangent at a point is twice the abscissa and which passes through the point (1, 2).
Find the equation to the curve satisfying x (x + 1) \[\frac{dy}{dx} - y\] = x (x + 1) and passing through (1, 0).
The x-intercept of the tangent line to a curve is equal to the ordinate of the point of contact. Find the particular curve through the point (1, 1).
Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.
The equation of the curve whose slope is given by \[\frac{dy}{dx} = \frac{2y}{x}; x > 0, y > 0\] and which passes through the point (1, 1) is
The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution
Which of the following is the integrating factor of (x log x) \[\frac{dy}{dx} + y\] = 2 log x?
Solve the differential equation:
`"x"("dy")/("dx")+"y"=3"x"^2-2`
Find the particular solution of the differential equation `"dy"/"dx" = "xy"/("x"^2+"y"^2),`given that y = 1 when x = 0
Determine the order and degree of the following differential equations.
Solution | D.E. |
y = 1 − logx | `x^2(d^2y)/dx^2 = 1` |
Determine the order and degree of the following differential equations.
Solution | D.E. |
ax2 + by2 = 5 | `xy(d^2y)/dx^2+ x(dy/dx)^2 = y dy/dx` |
The solution of `dy/dx + x^2/y^2 = 0` is ______
y2 dx + (xy + x2)dy = 0
Choose the correct alternative:
General solution of `y - x ("d"y)/("d"x)` = 0 is
The function y = ex is solution ______ of differential equation
Solve the following differential equation `("d"y)/("d"x)` = x2y + y
Find the particular solution of the following differential equation
`("d"y)/("d"x)` = e2y cos x, when x = `pi/6`, y = 0.
Solution: The given D.E. is `("d"y)/("d"x)` = e2y cos x
∴ `1/"e"^(2y) "d"y` = cos x dx
Integrating, we get
`int square "d"y` = cos x dx
∴ `("e"^(-2y))/(-2)` = sin x + c1
∴ e–2y = – 2sin x – 2c1
∴ `square` = c, where c = – 2c1
This is general solution.
When x = `pi/6`, y = 0, we have
`"e"^0 + 2sin pi/6` = c
∴ c = `square`
∴ particular solution is `square`