हिंदी

Y2 dx + (xy + x2)dy = 0 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

y2 dx + (xy + x2)dy = 0

योग

उत्तर

y2 dx + (xy + x2)dy = 0

∴ (xy + x2 ) dy = -y2 dx

∴ `dy/dx = -y^2/(xy + x^2)` ...(i)

Put y = tx ...(ii)

Differentiating w.r.t. x, we get

`dy/dx = t + x dt/dx` ...(iii)

Substituting (ii) and (iii) in (i), we get

∴ `t + x dt/dx = (-t^2 x^2)/(x.tx + x^2)`

∴ `t + x dt/dx = (-t^2 x^2)/(x^2(t+1)`

∴ `x dt/dx = (-t^2)/(t+1) -t`

∴  `x dt/dx = (-t^2 - t^2 - t)/(t+1)`

∴  `x dt/dx = (- (2t^2 + t))/(t+1)`

∴ `(t+1)/(2t^2 +t) dt = -1/x dx`

Integrating on both sides, we get

`int (t+1)/(2t^2 + t) dt = - int 1/x dx`

∴ `int (2t +1 - t)/(t(2t+1)) dt = - int 1/x dx`

∴ `int 1/t dt - int 1/(2t + 1) dt = -int 1/x dx`

∴ `log | t | -1/ 2 log |2t + 1| = -log |x| + log |c|`

∴ 2log| t | -log |2t + 1| = -2log |x| + 2 log |c|

∴ `2log |y/x| -log |(2y)/ x +1|=- 2log |x| + 2 log |c|`

∴  2log |y| - 2log |x| - log |2y + x| + log |x| = - 2log |x| + 2log |c|

∴  log |y2| + log |x| = log |c2 |+ log |2y + x|

∴  log |y2x| = log |c2(x + 2y)|

∴  xy2 = c2 (x + 2y)

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Differential Equation and Applications - Miscellaneous Exercise 8 [पृष्ठ १७३]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 8 Differential Equation and Applications
Miscellaneous Exercise 8 | Q 4.11 | पृष्ठ १७३

संबंधित प्रश्न

Verify that y = 4 sin 3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 9y = 0\]


\[\left( x^2 + 1 \right)\frac{dy}{dx} = 1\]

\[\cos x\frac{dy}{dx} - \cos 2x = \cos 3x\]

\[\frac{dy}{dx} = \left( e^x + 1 \right) y\]

\[\frac{dy}{dx} = \frac{x e^x \log x + e^x}{x \cos y}\]

(1 − x2) dy + xy dx = xy2 dx


\[\frac{dy}{dx} = 2 e^x y^3 , y\left( 0 \right) = \frac{1}{2}\]

\[\frac{dy}{dx} = y \sin 2x, y\left( 0 \right) = 1\]

\[\frac{dy}{dx} = 1 + x^2 + y^2 + x^2 y^2 , y\left( 0 \right) = 1\]

In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).


Solve the following initial value problem:-

\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]


Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\]  and tangent at any point of which makes an angle tan−1  \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.


The equation of the curve whose slope is given by \[\frac{dy}{dx} = \frac{2y}{x}; x > 0, y > 0\] and which passes through the point (1, 1) is


What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y \sin x = 1\], is


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

`y=sqrt(a^2-x^2)`              `x+y(dy/dx)=0`


Form the differential equation representing the family of curves y = a sin (x + b), where ab are arbitrary constant.


Solve the following differential equation.

y dx + (x - y2 ) dy = 0


Solve the differential equation:

`e^(dy/dx) = x`


Solve the differential equation `("d"y)/("d"x) + y` = e−x 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×