हिंदी

D Y D X = 2 E X Y 3 , Y ( 0 ) = 1 2 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{dy}{dx} = 2 e^x y^3 , y\left( 0 \right) = \frac{1}{2}\]

उत्तर

We have, 
\[\frac{dy}{dx} = 2 e^x y^3 , y\left( 0 \right) = \frac{1}{2}\]
\[ \Rightarrow \frac{1}{y^3}dy = 2 e^x dx\]
Integrating both sides, we get 
\[\int\frac{1}{y^3}dy = \int2 e^x dx\]
\[ \Rightarrow - \frac{1}{2 y^2} = 2 e^x + C . . . . . (1)\]
\[\text{ Given: at }x = 0, y = \frac{1}{2}\]
Substituting the values of x and y in (1), we get
\[ - \frac{1}{2 \times \frac{1}{4}} = 2 e^0 + C\]
\[ \Rightarrow C = - 2 - 2\]
\[ \Rightarrow C = - 4\]
Substituting the value of C in (1), we get
\[ \Rightarrow - \frac{1}{2 y^2} = 2 e^x - 4\]
\[ \Rightarrow y^2 \left( 8 - 4 e^x \right) = 1\]
\[\text{ Hence, }y^2 \left( 8 - 4 e^x \right) = 1 \text{ is the required solution }.\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.07 [पृष्ठ ५६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.07 | Q 42 | पृष्ठ ५६

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Verify that y = 4 sin 3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 9y = 0\]


Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.


Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]

Function y = log x


\[\left( x + 2 \right)\frac{dy}{dx} = x^2 + 3x + 7\]

(sin x + cos x) dy + (cos x − sin x) dx = 0


\[\left( 1 + x^2 \right)\frac{dy}{dx} - x = 2 \tan^{- 1} x\]

x cos y dy = (xex log x + ex) dx


(1 − x2) dy + xy dx = xy2 dx


tan y dx + sec2 y tan x dy = 0


tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y) 

 


\[x\sqrt{1 - y^2} dx + y\sqrt{1 - x^2} dy = 0\]

y (1 + ex) dy = (y + 1) ex dx


(y + xy) dx + (x − xy2) dy = 0


Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]


\[\frac{dy}{dx} = 2 e^{2x} y^2 , y\left( 0 \right) = - 1\]

Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.


Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\]  given that y = 1, when x = 0.


In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).


\[\frac{dy}{dx}\cos\left( x - y \right) = 1\]

3x2 dy = (3xy + y2) dx


\[x\frac{dy}{dx} = y - x \cos^2 \left( \frac{y}{x} \right)\]

Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.

 


Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]


The rate of growth of a population is proportional to the number present. If the population of a city doubled in the past 25 years, and the present population is 100000, when will the city have a population of 500000?


If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.

 

A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.


Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of  radium to decompose?


Define a differential equation.


The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by


The differential equation of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C\] is


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y \sin x = 1\], is


Which of the following differential equations has y = C1 ex + C2 ex as the general solution?


Determine the order and degree of the following differential equations.

Solution D.E.
ax2 + by2 = 5 `xy(d^2y)/dx^2+ x(dy/dx)^2 = y dy/dx`

State whether the following is True or False:

The integrating factor of the differential equation `dy/dx - y = x` is e-x


Solve

`dy/dx + 2/ x y = x^2`


Select and write the correct alternative from the given option for the question

The differential equation of y = Ae5x + Be–5x is


Select and write the correct alternative from the given option for the question 

Differential equation of the function c + 4yx = 0 is


Solve: `("d"y)/("d"x) + 2/xy` = x2 


Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.


Solve the differential equation

`y (dy)/(dx) + x` = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×