Advertisements
Advertisements
प्रश्न
tan y dx + sec2 y tan x dy = 0
उत्तर
We have,
\[\tan y dx + \sec^2 y \tan x dy = 0\]
\[ \Rightarrow \sec^2 y \tan x dy = - \tan y dx\]
\[ \Rightarrow \frac{\sec^2 y}{\tan y} dy = - \frac{1}{\tan x}dx\]
\[ \Rightarrow \frac{1}{\cos^2 y} \times \frac{\cos y}{\sin y}dy = - \cot x dx\]
\[ \Rightarrow \frac{1}{\sin y \cos y}dy = - \cot x dx\]
\[ \Rightarrow \frac{2}{\sin 2y}dy = - \cot x dx\]
\[ \Rightarrow 2 \text{ cosec } 2y dy = - \cot x dx\]
Integrating both sides, we get
\[2\int\text{ cosec }2y dy = - \int\cot x dx\]
\[ \Rightarrow \log \tan x = - \log \sin x = \log C\]
\[ \Rightarrow \log \tan x + \log \sin x = \log C\]
\[ \Rightarrow \log \left( \tan x \times \sin x \right) = \log C\]
\[ \Rightarrow \tan x \times \sin x = C\]
APPEARS IN
संबंधित प्रश्न
Prove that:
`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`
Assume that a rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.
Show that y = AeBx is a solution of the differential equation
Verify that \[y = ce^{tan^{- 1}} x\] is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]
Solve the following differential equation:
(xy2 + 2x) dx + (x2 y + 2y) dy = 0
Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]
Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]
Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.
Solve the following initial value problem:-
\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + 2y = e^{- 2x} \sin x, y\left( 0 \right) = 0\]
Solve the following initial value problem:-
\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]
In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]
The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.
Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.
A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.
The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is
The solution of the differential equation y1 y3 = y22 is
Which of the following differential equations has y = C1 ex + C2 e−x as the general solution?
Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .
Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]
Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.
Choose the correct option from the given alternatives:
The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of
Solve the following differential equation.
`y^3 - dy/dx = x dy/dx`
Choose the correct alternative.
Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in
Solve:
(x + y) dy = a2 dx
Solve: `("d"y)/("d"x) + 2/xy` = x2
Verify y = `a + b/x` is solution of `x(d^2y)/(dx^2) + 2 (dy)/(dx)` = 0
y = `a + b/x`
`(dy)/(dx) = square`
`(d^2y)/(dx^2) = square`
Consider `x(d^2y)/(dx^2) + 2(dy)/(dx)`
= `x square + 2 square`
= `square`
Hence y = `a + b/x` is solution of `square`
Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.
Solve: ydx – xdy = x2ydx.
The differential equation (1 + y2)x dx – (1 + x2)y dy = 0 represents a family of:
The value of `dy/dx` if y = |x – 1| + |x – 4| at x = 3 is ______.