हिंदी

Tan Y Dx + Sec2 Y Tan X Dy = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

tan y dx + sec2 y tan x dy = 0

उत्तर

We have, 
\[\tan y dx + \sec^2 y \tan x dy = 0\]
\[ \Rightarrow \sec^2 y \tan x dy = - \tan y dx\]
\[ \Rightarrow \frac{\sec^2 y}{\tan y} dy = - \frac{1}{\tan x}dx\]
\[ \Rightarrow \frac{1}{\cos^2 y} \times \frac{\cos y}{\sin y}dy = - \cot x dx\]
\[ \Rightarrow \frac{1}{\sin y \cos y}dy = - \cot x dx\]
\[ \Rightarrow \frac{2}{\sin 2y}dy = - \cot x dx\]
\[ \Rightarrow 2 \text{ cosec } 2y dy = - \cot x dx\]
Integrating both sides, we get
\[2\int\text{ cosec }2y dy = - \int\cot x dx\]
\[ \Rightarrow \log \tan x = - \log \sin x = \log C\]
\[ \Rightarrow \log \tan x + \log \sin x = \log C\]
\[ \Rightarrow \log \left( \tan x \times \sin x \right) = \log C\]
\[ \Rightarrow \tan x \times \sin x = C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.07 [पृष्ठ ५५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.07 | Q 22 | पृष्ठ ५५

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Prove that:

`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`


\[\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 + xy = 0\]

\[x + \left( \frac{dy}{dx} \right) = \sqrt{1 + \left( \frac{dy}{dx} \right)^2}\]

\[x^2 \left( \frac{d^2 y}{d x^2} \right)^3 + y \left( \frac{dy}{dx} \right)^4 + y^4 = 0\]

Assume that a rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.

 

Show that y = AeBx is a solution of the differential equation

\[\frac{d^2 y}{d x^2} = \frac{1}{y} \left( \frac{dy}{dx} \right)^2\]

Verify that \[y = ce^{tan^{- 1}} x\]  is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]


\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y\left( 2 \right) = 0\]

Solve the following differential equation: 
(xy2 + 2x) dx + (x2 y + 2y) dy = 0


Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]


Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]

 


\[\frac{dy}{dx} = 2 e^{2x} y^2 , y\left( 0 \right) = - 1\]

Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\]  given that y = 1, when x = 0.


\[\left( x + y \right)^2 \frac{dy}{dx} = 1\]

\[\frac{dy}{dx} = \frac{y - x}{y + x}\]

\[x^2 \frac{dy}{dx} = x^2 - 2 y^2 + xy\]

Solve the following initial value problem:-

\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y = e^{- 2x} \sin x, y\left( 0 \right) = 0\]


Solve the following initial value problem:-

\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]


In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]


The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.


Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.

 

A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.


The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is


The solution of the differential equation y1 y3 = y22 is


Which of the following differential equations has y = C1 ex + C2 ex as the general solution?


Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .


Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]


Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.


Choose the correct option from the given alternatives:

The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of


Solve the following differential equation.

`y^3 - dy/dx = x dy/dx`


Choose the correct alternative.

Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in


Solve:

(x + y) dy = a2 dx


Solve: `("d"y)/("d"x) + 2/xy` = x2 


Verify y = `a + b/x` is solution of `x(d^2y)/(dx^2) + 2 (dy)/(dx)` = 0

y = `a + b/x`

`(dy)/(dx) = square`

`(d^2y)/(dx^2) = square`

Consider `x(d^2y)/(dx^2) + 2(dy)/(dx)`

= `x square + 2 square`

= `square`

Hence y = `a + b/x` is solution of `square`


Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.


Solve: ydx – xdy = x2ydx.


The differential equation (1 + y2)x dx – (1 + x2)y dy = 0 represents a family of:


The value of `dy/dx` if y = |x – 1| + |x – 4| at x = 3 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×