हिंदी

Verify that Y = C E T a N − 1 X is a Solution of the Differential Equation ( 1 + X 2 ) D 2 Y D X 2 + ( 2 X − 1 ) D Y D X = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Verify that \[y = ce^{tan^{- 1}} x\]  is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]

योग

उत्तर

We have,

\[y = c e^{tan^{- 1}x } ............(1)\]

Differentiating both sides of (1) with respect to x, we get

\[\frac{dy}{dx} = c e^{tan^{- 1}x } \frac{1}{1 + x^2}............(2)\]

Differentiating both sides of (2) with respect to x, we get

\[\frac{d^2 y}{d x^2} = c\frac{\left( 1 + x^2 \right) e^{tan^{- 1}x} \frac{1}{1 + x^2} - e^{tan^{- 1}x} \left( 2x \right)}{\left( 1 + x^2 \right)^2}\]

\[ \Rightarrow \frac{d^2 y}{d x^2} = c\frac{e^{tan^{- 1}x} - 2x e^{tan^{- 1}x}}{\left( 1 + x^2 \right)^2}\]

\[ \Rightarrow \frac{d^2 y}{d x^2} = c\frac{\left( 1 - 2x \right) e^{tan^{- 1}x}}{\left( 1 + x^2 \right)^2}\]

\[ \Rightarrow \left( 1 + x^2 \right)\frac{d^2 y}{d x^2} = c\left( 1 - 2x \right)\frac{e^{tan^{- 1}x}}{\left( 1 + x^2 \right)}\]

\[ \Rightarrow \left( 1 + x^2 \right)\frac{d^2 y}{d x^2} = \left( 1 - 2x \right)\frac{dy}{dx} ..........\left[\text{Using }\left( 2 \right) \right]\]

\[ \Rightarrow \left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]

Hence, the given function is the solution to the given differential equation.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.03 [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.03 | Q 16 | पृष्ठ २५

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

\[\frac{d^2 y}{d x^2} + 4y = 0\]

Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.


Show that the differential equation of which y = 2(x2 − 1) + \[c e^{- x^2}\] is a solution, is \[\frac{dy}{dx} + 2xy = 4 x^3\]


Show that y = AeBx is a solution of the differential equation

\[\frac{d^2 y}{d x^2} = \frac{1}{y} \left( \frac{dy}{dx} \right)^2\]

Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x + y\frac{dy}{dx} = 0\]
\[y = \pm \sqrt{a^2 - x^2}\]

Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2


\[\frac{dy}{dx} = \log x\]

\[\left( 1 + x^2 \right)\frac{dy}{dx} - x = 2 \tan^{- 1} x\]

\[x\frac{dy}{dx} + 1 = 0 ; y \left( - 1 \right) = 0\]

x cos2 y  dx = y cos2 x dy


\[\frac{dy}{dx} = 2 e^{2x} y^2 , y\left( 0 \right) = - 1\]

\[\cos y\frac{dy}{dx} = e^x , y\left( 0 \right) = \frac{\pi}{2}\]

In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).


\[\left( x + y \right)^2 \frac{dy}{dx} = 1\]

\[\frac{dy}{dx} = \frac{y^2 - x^2}{2xy}\]

2xy dx + (x2 + 2y2) dy = 0


Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \log x, y\left( 1 \right) = 0\]


Solve the following initial value problem:-

\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]


The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.


The normal to a given curve at each point (x, y) on the curve passes through the point (3, 0). If the curve contains the point (3, 4), find its equation.


Find the equation of the curve passing through the point (0, 1) if the slope of the tangent to the curve at each of its point is equal to the sum of the abscissa and the product of the abscissa and the ordinate of the point.


If sin x is an integrating factor of the differential equation \[\frac{dy}{dx} + Py = Q\], then write the value of P.


The differential equation of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C\] is


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y \sin x = 1\], is


In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
xy = log y + k y' (1 - xy) = y2

Solve the following differential equation.

`dy/dx = x^2 y + y`


Solve the following differential equation.

xdx + 2y dx = 0


Solve the following differential equation.

`xy  dy/dx = x^2 + 2y^2`


Solve the following differential equation.

`(x + y) dy/dx = 1`


Choose the correct alternative.

The differential equation of y = `k_1 + k_2/x` is


State whether the following is True or False:

The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.


Solve the differential equation:

`e^(dy/dx) = x`


Select and write the correct alternative from the given option for the question

The differential equation of y = Ae5x + Be–5x is


Select and write the correct alternative from the given option for the question 

Differential equation of the function c + 4yx = 0 is


Solve the differential equation `("d"y)/("d"x) + y` = e−x 


Solve the following differential equation y log y = `(log  y - x) ("d"y)/("d"x)`


Solve: ydx – xdy = x2ydx.


`d/(dx)(tan^-1  (sqrt(1 + x^2) - 1)/x)` is equal to:


The value of `dy/dx` if y = |x – 1| + |x – 4| at x = 3 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×