हिंदी

Verify that Y = E M Cos − 1 X Satisfies the Differential Equation ( 1 − X 2 ) D 2 Y D X 2 − X D Y D X − M 2 Y = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Verify that \[y = e^{m \cos^{- 1} x}\] satisfies the differential equation \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - m^2 y = 0\]

योग

उत्तर

We have,

\[y = e^{m \cos^{- 1} x}.........(1)\]

Differentiating both sides of (1) with respect to x, we get

\[\frac{dy}{dx} = m e^{m \cos^{- 1} x} \left( \frac{- 1}{\sqrt{1 - x^2}} \right)\]

\[ \Rightarrow \frac{dy}{dx} = - \frac{m e^{m \cos^{- 1} x}}{\sqrt{1 - x^2}} .........(2)\]

Differentiating both sides of (2) with respect to x, we get

\[\frac{d^2 y}{d x^2} = \frac{d}{dx}\left( - \frac{m e^{m \cos^{- 1} x}}{\sqrt{1 - x^2}} \right)\]

\[ \Rightarrow \frac{d^2 y}{d x^2} = \left( - m \right)\left[ \frac{\sqrt{1 - x^2}m e^{m \cos^{- 1} x} \left( - \frac{1}{\sqrt{1 - x^2}} \right) - e^{m \cos^{- 1} x} \frac{1}{2}\left( - \frac{2x}{\sqrt{1 - x^2}} \right)}{\left( 1 - x^2 \right)} \right]\]

\[ \Rightarrow \left( 1 - x^2 \right)\frac{d^2 y}{d x^2} = \left( - m \right)\left[ - m e^{m \cos^{- 1} x} + \frac{x e^{m \cos^{- 1} x}}{\sqrt{1 - x^2}} \right]\]

\[ \Rightarrow \left( 1 - x^2 \right)\frac{d^2 y}{d x^2} = m^2 e^{m \cos^{- 1} x} - mx\frac{e^{m \cos^{- 1} x}}{\sqrt{1 - x^2}}\]

\[ \Rightarrow \left( 1 - x^2 \right)\frac{d^2 y}{d x^2} = m^2 y + x\frac{dy}{dx} ..........\left[\text{Using }\left( 1 \right)\text{ and }\left( 2 \right) \right]\]

\[ \Rightarrow \left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - m^2 y = 0\]

Hence, the given function is the solution to the given differential equation.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.03 [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.03 | Q 17 | पृष्ठ २५

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

\[\left( \frac{dy}{dx} \right)^2 + \frac{1}{dy/dx} = 2\]

Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]

Function y = log x


\[\left( x + 2 \right)\frac{dy}{dx} = x^2 + 3x + 7\]

\[\frac{1}{x}\frac{dy}{dx} = \tan^{- 1} x, x \neq 0\]

\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]

\[\sqrt{1 - x^4} dy = x\ dx\]

\[\frac{dy}{dx} = x \log x\]

x cos2 y  dx = y cos2 x dy


\[2x\frac{dy}{dx} = 3y, y\left( 1 \right) = 2\]

Solve the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + \left( 1 + y^2 \right) = 0\], given that y = 1, when x = 0.


Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\] 

 


In a culture the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present.


\[\cos^2 \left( x - 2y \right) = 1 - 2\frac{dy}{dx}\]

\[\frac{dy}{dx} + 1 = e^{x + y}\]

\[x\frac{dy}{dx} = x + y\]

2xy dx + (x2 + 2y2) dy = 0


Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]


The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.


A population grows at the rate of 5% per year. How long does it take for the population to double?


Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\]  and tangent at any point of which makes an angle tan−1  \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.


Define a differential equation.


Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.


The solution of the differential equation y1 y3 = y22 is


Which of the following transformations reduce the differential equation \[\frac{dz}{dx} + \frac{z}{x}\log z = \frac{z}{x^2} \left( \log z \right)^2\] into the form \[\frac{du}{dx} + P\left( x \right) u = Q\left( x \right)\]


What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?


y2 dx + (x2 − xy + y2) dy = 0


Form the differential equation representing the family of curves y = a sin (x + b), where ab are arbitrary constant.


If a + ib = `("x" + "iy")/("x" - "iy"),` prove that `"a"^2 +"b"^2 = 1` and `"b"/"a" = (2"xy")/("x"^2 - "y"^2)`


In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
y = xn `x^2(d^2y)/dx^2 - n xx (xdy)/dx + ny =0`

Determine the order and degree of the following differential equations.

Solution D.E.
y = 1 − logx `x^2(d^2y)/dx^2 = 1`

Solve the differential equation xdx + 2ydy = 0


Solve the following differential equation

`x^2  ("d"y)/("d"x)` = x2 + xy − y2 


Solve the following differential equation

`y log y ("d"x)/("d"y) + x` = log y


Solve: ydx – xdy = x2ydx.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×