Advertisements
Advertisements
प्रश्न
Verify that \[y = e^{m \cos^{- 1} x}\] satisfies the differential equation \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - m^2 y = 0\]
उत्तर
We have,
\[y = e^{m \cos^{- 1} x}.........(1)\]
Differentiating both sides of (1) with respect to x, we get
\[\frac{dy}{dx} = m e^{m \cos^{- 1} x} \left( \frac{- 1}{\sqrt{1 - x^2}} \right)\]
\[ \Rightarrow \frac{dy}{dx} = - \frac{m e^{m \cos^{- 1} x}}{\sqrt{1 - x^2}} .........(2)\]
Differentiating both sides of (2) with respect to x, we get
\[\frac{d^2 y}{d x^2} = \frac{d}{dx}\left( - \frac{m e^{m \cos^{- 1} x}}{\sqrt{1 - x^2}} \right)\]
\[ \Rightarrow \frac{d^2 y}{d x^2} = \left( - m \right)\left[ \frac{\sqrt{1 - x^2}m e^{m \cos^{- 1} x} \left( - \frac{1}{\sqrt{1 - x^2}} \right) - e^{m \cos^{- 1} x} \frac{1}{2}\left( - \frac{2x}{\sqrt{1 - x^2}} \right)}{\left( 1 - x^2 \right)} \right]\]
\[ \Rightarrow \left( 1 - x^2 \right)\frac{d^2 y}{d x^2} = \left( - m \right)\left[ - m e^{m \cos^{- 1} x} + \frac{x e^{m \cos^{- 1} x}}{\sqrt{1 - x^2}} \right]\]
\[ \Rightarrow \left( 1 - x^2 \right)\frac{d^2 y}{d x^2} = m^2 e^{m \cos^{- 1} x} - mx\frac{e^{m \cos^{- 1} x}}{\sqrt{1 - x^2}}\]
\[ \Rightarrow \left( 1 - x^2 \right)\frac{d^2 y}{d x^2} = m^2 y + x\frac{dy}{dx} ..........\left[\text{Using }\left( 1 \right)\text{ and }\left( 2 \right) \right]\]
\[ \Rightarrow \left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - m^2 y = 0\]
Hence, the given function is the solution to the given differential equation.
APPEARS IN
संबंधित प्रश्न
Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]
Function y = log x
x cos2 y dx = y cos2 x dy
Solve the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + \left( 1 + y^2 \right) = 0\], given that y = 1, when x = 0.
Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\]
In a culture the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present.
2xy dx + (x2 + 2y2) dy = 0
Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]
The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.
A population grows at the rate of 5% per year. How long does it take for the population to double?
Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\] and tangent at any point of which makes an angle tan−1 \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.
Define a differential equation.
Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.
The solution of the differential equation y1 y3 = y22 is
Which of the following transformations reduce the differential equation \[\frac{dz}{dx} + \frac{z}{x}\log z = \frac{z}{x^2} \left( \log z \right)^2\] into the form \[\frac{du}{dx} + P\left( x \right) u = Q\left( x \right)\]
What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?
y2 dx + (x2 − xy + y2) dy = 0
Form the differential equation representing the family of curves y = a sin (x + b), where a, b are arbitrary constant.
If a + ib = `("x" + "iy")/("x" - "iy"),` prove that `"a"^2 +"b"^2 = 1` and `"b"/"a" = (2"xy")/("x"^2 - "y"^2)`
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = xn | `x^2(d^2y)/dx^2 - n xx (xdy)/dx + ny =0` |
Determine the order and degree of the following differential equations.
Solution | D.E. |
y = 1 − logx | `x^2(d^2y)/dx^2 = 1` |
Solve the differential equation xdx + 2ydy = 0
Solve the following differential equation
`x^2 ("d"y)/("d"x)` = x2 + xy − y2
Solve the following differential equation
`y log y ("d"x)/("d"y) + x` = log y
Solve: ydx – xdy = x2ydx.