Advertisements
Advertisements
प्रश्न
Solve the differential equation xdx + 2ydy = 0
उत्तर
xdx + 2ydy = 0
Integrating on both sides, we get
`int x "d"x + 2inty "d"y` = 0
∴ `x^2/2 + 2(y^2/2)^2` = c1
∴ x2 + 2y2 = c, where c = 2c1
संबंधित प्रश्न
Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.
Verify that y = 4 sin 3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 9y = 0\]
Show that y = AeBx is a solution of the differential equation
Show that the differential equation of which \[y = 2\left( x^2 - 1 \right) + c e^{- x^2}\] is a solution is \[\frac{dy}{dx} + 2xy = 4 x^3\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[y = \left( \frac{dy}{dx} \right)^2\]
|
\[y = \frac{1}{4} \left( x \pm a \right)^2\]
|
Differential equation \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 3\] Function y = ex + e2x
(sin x + cos x) dy + (cos x − sin x) dx = 0
x cos y dy = (xex log x + ex) dx
(ey + 1) cos x dx + ey sin x dy = 0
(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0
(y2 + 1) dx − (x2 + 1) dy = 0
Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]
Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]
Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.
Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.
The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after `t` seconds.
In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).
Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
(x + y) (dx − dy) = dx + dy
(x + 2y) dx − (2x − y) dy = 0
Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]
Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + y \tan x = 2x + x^2 \tan x, y\left( 0 \right) = 1\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]
Solve the following initial value problem:-
\[\tan x\left( \frac{dy}{dx} \right) = 2x\tan x + x^2 - y; \tan x \neq 0\] given that y = 0 when \[x = \frac{\pi}{2}\]
In a culture, the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?
Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.
The tangent at any point (x, y) of a curve makes an angle tan−1(2x + 3y) with x-axis. Find the equation of the curve if it passes through (1, 2).
The normal to a given curve at each point (x, y) on the curve passes through the point (3, 0). If the curve contains the point (3, 4), find its equation.
The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.
If sin x is an integrating factor of the differential equation \[\frac{dy}{dx} + Py = Q\], then write the value of P.
Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]
Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is
The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when
The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by
The solution of the differential equation y1 y3 = y22 is
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
`y=sqrt(a^2-x^2)` `x+y(dy/dx)=0`
Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.
Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2).
Determine the order and degree of the following differential equations.
Solution | D.E. |
y = 1 − logx | `x^2(d^2y)/dx^2 = 1` |
Find the differential equation whose general solution is
x3 + y3 = 35ax.
Solve the following differential equation.
`(dθ)/dt = − k (θ − θ_0)`
Solve the following differential equation.
`y^3 - dy/dx = x dy/dx`
For each of the following differential equations find the particular solution.
`y (1 + logx)dx/dy - x log x = 0`,
when x=e, y = e2.
For the following differential equation find the particular solution.
`dy/ dx = (4x + y + 1),
when y = 1, x = 0
Solve the following differential equation.
x2y dx − (x3 + y3 ) dy = 0
Solve the following differential equation.
dr + (2r)dθ= 8dθ
Choose the correct alternative.
Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in
A solution of a differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called ___________ solution.
State whether the following is True or False:
The integrating factor of the differential equation `dy/dx - y = x` is e-x
State whether the following is True or False:
The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.
y2 dx + (xy + x2)dy = 0
Solve: `("d"y)/("d"x) + 2/xy` = x2
For the differential equation, find the particular solution (x – y2x) dx – (y + x2y) dy = 0 when x = 2, y = 0
Solve the following differential equation
`x^2 ("d"y)/("d"x)` = x2 + xy − y2
A solution of differential equation which can be obtained from the general solution by giving particular values to the arbitrary constant is called ______ solution
The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______
The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`
Find the particular solution of the following differential equation
`("d"y)/("d"x)` = e2y cos x, when x = `pi/6`, y = 0.
Solution: The given D.E. is `("d"y)/("d"x)` = e2y cos x
∴ `1/"e"^(2y) "d"y` = cos x dx
Integrating, we get
`int square "d"y` = cos x dx
∴ `("e"^(-2y))/(-2)` = sin x + c1
∴ e–2y = – 2sin x – 2c1
∴ `square` = c, where c = – 2c1
This is general solution.
When x = `pi/6`, y = 0, we have
`"e"^0 + 2sin pi/6` = c
∴ c = `square`
∴ particular solution is `square`
Solve `x^2 "dy"/"dx" - xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`
Solve the differential equation `"dy"/"dx" + 2xy` = y
Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.
Solve: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`. [Hint: Substitute x + y = z]
The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0
There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?
A man is moving away from a tower 41.6 m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is
The differential equation (1 + y2)x dx – (1 + x2)y dy = 0 represents a family of:
Solve the differential equation
`x + y dy/dx` = x2 + y2
Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.