Advertisements
Advertisements
प्रश्न
The tangent at any point (x, y) of a curve makes an angle tan−1(2x + 3y) with x-axis. Find the equation of the curve if it passes through (1, 2).
उत्तर
The slope of the curve is given as \[\frac{dy}{dx} = \tan \theta\] Here,
\[\theta = \tan^{- 1} \left( 2x + 3y \right)\]
\[ \therefore \frac{dy}{dx} = \tan\left( \tan^{- 1} 2x + 3y \right)\]
\[ \Rightarrow \frac{dy}{dx} = 2x + 3y\]
\[\Rightarrow \frac{dy}{dx} - 3y = 2x . . . . . \left( 1 \right)\]
Clearly, it is a linear differential equation of the form
\[\frac{dy}{dx} + Py = Q\]
\[\text{ where }P = - 3\text{ and }Q = 2x\]
\[ \therefore I . F . = e^{\int P\ dx} \]
\[ = e^{\int - 3 dx} \]
\[ = e^{- 3x} \]
\[\text{ Multiplying both sides of }(1),\text{ by }I . F . = e^{- 3x} , \text{ we get }\]
\[ e^{- 3x} \left( \frac{dy}{dx} - 3y \right) = e^{- 3x} . 2x\]
\[ \Rightarrow e^{- 3x} \left( \frac{dy}{dx} - 3y \right) = 2x e^{- 3x} \]
Integrating both sides with respect to x, we get
\[y e^{- 3x} = 2\int x e^{- 3x} dx + C\]
\[ \Rightarrow y e^{- 3x} = 2x\int e^{- 3x} dx - 2\int\left[ \frac{d}{dx}\left( x \right)\int e^{- 3x} dx \right]dx + C\]
\[ \Rightarrow y e^{- 3x} = - 2x\frac{e^{- 3x}}{3} + 2 \times \frac{1}{3}\int e^{- 3x} dx + C\]
\[ \Rightarrow y e^{- 3x} = - \frac{2}{3}x e^{- 3x} - 2 \times \frac{1}{9} e^{- 3x} + C\]
\[ \Rightarrow y e^{- 3x} = - \frac{2}{3}x e^{- 3x} - \frac{2}{9} e^{- 3x} + C\]
\[\text{ Since the curve passes through }\left( 1, 2 \right),\text{ it satisfies the above equation.}\]
\[ \therefore 2 e^{- 3} = - \frac{2}{3} e^{- 3} - \frac{2}{9} e^{- 3} + C\]
\[ \Rightarrow C = 2 e^{- 3} + \frac{2}{3} e^{- 3} + \frac{2}{9} e^{- 3} \]
\[ \Rightarrow C = \frac{26}{9} e^{- 3} \]
Putting the value of C, we get
\[y e^{- 3x} = \left( - \frac{2}{3}x - \frac{2}{9} \right) e^{- 3x} + \frac{26}{9} e^{- 3} \]
APPEARS IN
संबंधित प्रश्न
Verify that y2 = 4a (x + a) is a solution of the differential equations
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]
Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2
xy dy = (y − 1) (x + 1) dx
Solve the differential equation \[x\frac{dy}{dx} + \cot y = 0\] given that \[y = \frac{\pi}{4}\], when \[x=\sqrt{2}\]
Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.
The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after `t` seconds.
2xy dx + (x2 + 2y2) dy = 0
Solve the following initial value problem:-
\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]
Solve the following initial value problem:-
\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]
Solve the following initial value problem:-
\[\frac{dy}{dx} - 3y \cot x = \sin 2x; y = 2\text{ when }x = \frac{\pi}{2}\]
A population grows at the rate of 5% per year. How long does it take for the population to double?
Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\] and tangent at any point of which makes an angle tan−1 \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.
The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.
Find the equation of the curve passing through the point (0, 1) if the slope of the tangent to the curve at each of its point is equal to the sum of the abscissa and the product of the abscissa and the ordinate of the point.
Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y \sin x = 1\], is
Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].
y2 dx + (x2 − xy + y2) dy = 0
Choose the correct option from the given alternatives:
The solution of `1/"x" * "dy"/"dx" = tan^-1 "x"` is
Form the differential equation from the relation x2 + 4y2 = 4b2
Solve the following differential equation.
y2 dx + (xy + x2 ) dy = 0
Solve the following differential equation.
`dy/dx + y = e ^-x`
State whether the following is True or False:
The integrating factor of the differential equation `dy/dx - y = x` is e-x
x2y dx – (x3 + y3) dy = 0
Select and write the correct alternative from the given option for the question
Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in
Select and write the correct alternative from the given option for the question
Differential equation of the function c + 4yx = 0 is
Solve the differential equation sec2y tan x dy + sec2x tan y dx = 0
Solve the differential equation xdx + 2ydy = 0
Solve the following differential equation
`yx ("d"y)/("d"x)` = x2 + 2y2
Choose the correct alternative:
General solution of `y - x ("d"y)/("d"x)` = 0 is
Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.
Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.
The differential equation (1 + y2)x dx – (1 + x2)y dy = 0 represents a family of: