Advertisements
Advertisements
प्रश्न
Verify that y2 = 4a (x + a) is a solution of the differential equations
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]
उत्तर
We have,
\[y^2 = 4a\left( x + a \right)...........(1)\]
Differentiating both sides of (1) with respect to x, we get
\[2y\frac{dy}{dx} = 4a\]
\[ \Rightarrow y\frac{dy}{dx} = 2a\]
\[ \Rightarrow \frac{dy}{dx} = \frac{2a}{y} ..........(2)\]
Now,
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} - 2x\frac{dy}{dx}\]
\[ = y\left\{ 1 - \frac{4 a^2}{y^2} \right\} - 2x\left( \frac{2a}{y} \right)\]
\[ = y\left\{ \frac{y^2 - 4 a^2}{y^2} \right\} - \frac{4ax}{y}\]
\[ = \frac{y^2 - 4 a^2}{y} - \frac{4ax}{y}\]
\[ = \frac{\left( 4ax + 4 a^2 \right) - 4 a^2}{y} - \frac{4ax}{y} ...........\left[\text{Using }\left( 1 \right) \right]\]
\[ = \frac{4ax}{y} - \frac{4ax}{y} = 0\]
\[ \Rightarrow y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]
Hence, the given function is the solution to the given differential equation.
APPEARS IN
संबंधित प्रश्न
Assume that a rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.
Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.
Show that the differential equation of which y = 2(x2 − 1) + \[c e^{- x^2}\] is a solution, is \[\frac{dy}{dx} + 2xy = 4 x^3\]
Verify that \[y = e^{m \cos^{- 1} x}\] satisfies the differential equation \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - m^2 y = 0\]
Solve the following differential equation:
(xy2 + 2x) dx + (x2 y + 2y) dy = 0
Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]
Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\]
(x + 2y) dx − (2x − y) dy = 0
Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]
Solve the following initial value problem:-
\[\frac{dy}{dx} - 3y \cot x = \sin 2x; y = 2\text{ when }x = \frac{\pi}{2}\]
The rate of growth of a population is proportional to the number present. If the population of a city doubled in the past 25 years, and the present population is 100000, when will the city have a population of 500000?
If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.
Find the equation to the curve satisfying x (x + 1) \[\frac{dy}{dx} - y\] = x (x + 1) and passing through (1, 0).
Find the equation of the curve which passes through the origin and has the slope x + 3y− 1 at any point (x, y) on it.
Find the equation of the curve passing through the point (0, 1) if the slope of the tangent to the curve at each of its point is equal to the sum of the abscissa and the product of the abscissa and the ordinate of the point.
The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).
The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by
The differential equation of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C\] is
Which of the following is the integrating factor of (x log x) \[\frac{dy}{dx} + y\] = 2 log x?
Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]
Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2).
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
xy = log y + k | y' (1 - xy) = y2 |
Form the differential equation from the relation x2 + 4y2 = 4b2
Solve the following differential equation.
y2 dx + (xy + x2 ) dy = 0
Solve the following differential equation.
(x2 − y2 ) dx + 2xy dy = 0
Solve the differential equation sec2y tan x dy + sec2x tan y dx = 0
Solve the differential equation `("d"y)/("d"x) + y` = e−x
For the differential equation, find the particular solution
`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0
Choose the correct alternative:
General solution of `y - x ("d"y)/("d"x)` = 0 is
`d/(dx)(tan^-1 (sqrt(1 + x^2) - 1)/x)` is equal to: