Advertisements
Advertisements
प्रश्न
The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by
विकल्प
y = xex + C
x = yex
y = x + C
xy = ex + C
उत्तर
y = xex + C
We have,
\[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\]
\[ \Rightarrow \frac{dy}{dx} = \frac{y\left( x + 1 \right)}{x}\]
\[ \Rightarrow \frac{dy}{y} = \frac{\left( x + 1 \right)}{x}dx\]
Integrating both sides, we get
\[\int\frac{dy}{y} = \int\frac{\left( x + 1 \right)}{x}dx\]
\[ \Rightarrow \int\frac{dy}{y} = \int dx + \int\frac{1}{x}dx\]
\[ \Rightarrow \log y = x + \log x + C\]
\[ \Rightarrow \log y - \log x = x + C\]
\[ \Rightarrow \log \left( \frac{y}{x} \right) = x + C\]
\[ \Rightarrow \frac{y}{x} = e^{x + C} \]
\[ \Rightarrow y = x e^{x + C}\]
APPEARS IN
संबंधित प्रश्न
Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]
Show that the differential equation of which \[y = 2\left( x^2 - 1 \right) + c e^{- x^2}\] is a solution is \[\frac{dy}{dx} + 2xy = 4 x^3\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x + y\frac{dy}{dx} = 0\]
|
\[y = \pm \sqrt{a^2 - x^2}\]
|
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x\frac{dy}{dx} + y = y^2\]
|
\[y = \frac{a}{x + a}\]
|
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x^3 \frac{d^2 y}{d x^2} = 1\]
|
\[y = ax + b + \frac{1}{2x}\]
|
Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2
(ey + 1) cos x dx + ey sin x dy = 0
y (1 + ex) dy = (y + 1) ex dx
(y2 + 1) dx − (x2 + 1) dy = 0
dy + (x + 1) (y + 1) dx = 0
Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]
Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]
Solve the following initial value problem:-
\[\tan x\left( \frac{dy}{dx} \right) = 2x\tan x + x^2 - y; \tan x \neq 0\] given that y = 0 when \[x = \frac{\pi}{2}\]
In a culture, the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?
Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.
The x-intercept of the tangent line to a curve is equal to the ordinate of the point of contact. Find the particular curve through the point (1, 1).
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
`y=sqrt(a^2-x^2)` `x+y(dy/dx)=0`
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
xy = log y + k | y' (1 - xy) = y2 |
The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.
Solve the differential equation:
dr = a r dθ − θ dr
Solve:
(x + y) dy = a2 dx
`dy/dx = log x`
Solve the following differential equation
`x^2 ("d"y)/("d"x)` = x2 + xy − y2
The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______
Solve the following differential equation
`y log y ("d"x)/("d"y) + x` = log y
Solution of `x("d"y)/("d"x) = y + x tan y/x` is `sin(y/x)` = cx
A man is moving away from a tower 41.6 m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is