हिंदी

Find the Curve for Which the Intercept Cut-off by a Tangent on X-axis is Equal to Four Times the Ordinate of the Point of Contact. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.

 

उत्तर

Let the given curve be y = f(x). Suppose P(x,y) be a point on the curve. Equation of the tangent to the curve at P is \[Y - y = \frac{dy}{dx}(X - x)\] , where (X, Y) is the arbitrary point on the tangent.
Putting Y=0 we get,
\[0 - y = \frac{dy}{dx}(X - x)\]
\[\text{ Therefore, }X - x = - y\frac{dx}{dy}\]
\[ \Rightarrow X = x - y\frac{dx}{dy}\]
\[\text{ Therefore, cut off by the tangent on the }x -\text{ axis }= x - y\frac{dx}{dy}\]
\[\text{ Given, }x - y\frac{dx}{dy} = 4y\]
\[\text{ Therefore, }- y\frac{dx}{dy} = 4y - x\]
\[ \Rightarrow \frac{dx}{dy} = \frac{x - 4y}{y}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{y}{x - 4y} . . . . . . . . (1)\]
this is a homogeneous differential equation .
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx} \text{ in }(1) \text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{vx}{x - 4vx}\]
\[\text{ Therefore, }v + x\frac{dv}{dx} = \frac{v}{1 - 4v}\]
\[ \Rightarrow \frac{xdv}{dx} = \frac{v}{1 - 4v} - v = \frac{4 v^2}{1 - 4v}\]
\[ \Rightarrow \frac{1 - 4v}{v^2}dv = 4\frac{dx}{x}\]
Integrating on both sides we get,
\[\int\frac{1 - 4v}{v^2}dv = 4\int\frac{dx}{x}\]
\[\text{ Therefore, }\int\frac{dv}{v^2} - 4\int\frac{dv}{v} = 4\int\frac{dx}{x}\]
\[ \Rightarrow - \frac{1}{v} - 4 \log v = 4 \log x + \log c\]
\[ \Rightarrow - \frac{1}{v} = 4 log x + log c + 4 log v\]
\[ \Rightarrow 4 \log(xv) + \log c = - \frac{1}{v}\]
putting the value of v we get
\[4 log(x \times \frac{y}{x}) + log c = - \frac{x}{y}\]
\[ \Rightarrow 4 log(y) + log c = - \frac{x}{y}\]
\[ \Rightarrow \log ( y^4 c) = - \frac{x}{y}\]
\[ \Rightarrow y^4 c = e^{- \frac{x}{y}} \]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.11 [पृष्ठ १३५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.11 | Q 16 | पृष्ठ १३५

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Verify that y = cx + 2c2 is a solution of the differential equation 

\[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0\].

Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 0, y' \left( 0 \right) = 1\] Function y = sin x


Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex


\[\frac{dy}{dx} = \cos^3 x \sin^2 x + x\sqrt{2x + 1}\]

\[\frac{dy}{dx} = x^5 \tan^{- 1} \left( x^3 \right)\]

\[\sqrt{1 - x^4} dy = x\ dx\]

\[\left( 1 + x^2 \right)\frac{dy}{dx} - x = 2 \tan^{- 1} x\]

\[\frac{dy}{dx} = x \log x\]

\[\frac{dy}{dx} = \left( e^x + 1 \right) y\]

Solve the following differential equation:
\[y\left( 1 - x^2 \right)\frac{dy}{dx} = x\left( 1 + y^2 \right)\]

 


\[2x\frac{dy}{dx} = 3y, y\left( 1 \right) = 2\]

\[xy\frac{dy}{dx} = y + 2, y\left( 2 \right) = 0\]

\[\frac{dy}{dx} = 1 + x^2 + y^2 + x^2 y^2 , y\left( 0 \right) = 1\]

\[\left( x + y \right)^2 \frac{dy}{dx} = 1\]

\[x^2 \frac{dy}{dx} = x^2 - 2 y^2 + xy\]

Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]


\[\left[ x\sqrt{x^2 + y^2} - y^2 \right] dx + xy\ dy = 0\]

Solve the following initial value problem:-

\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y = e^{- 2x} \sin x, y\left( 0 \right) = 0\]


Solve the following initial value problem:-

\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]


The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.


The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.


Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.


The solution of the differential equation y1 y3 = y22 is


Which of the following is the integrating factor of (x log x) \[\frac{dy}{dx} + y\] = 2 log x?


Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .


If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y = ex + 1            y'' − y' = 0


The price of six different commodities for years 2009 and year 2011 are as follows: 

Commodities A B C D E F

Price in 2009 (₹)

35 80 25 30 80 x
Price in 2011 (₹) 50 y 45 70 120 105

The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.


In each of the following examples, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
y = ex  `dy/ dx= y`

For  the following differential equation find the particular solution.

`dy/ dx = (4x + y + 1),

when  y = 1, x = 0


Solve the following differential equation.

x2y dx − (x3 + y3 ) dy = 0


Solve the following differential equation.

`x^2 dy/dx = x^2 +xy - y^2`


y2 dx + (xy + x2)dy = 0


 `dy/dx = log x`


Solve the differential equation `("d"y)/("d"x) + y` = e−x 


An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.


The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0


lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×