हिंदी

D Y D X = Cos 3 X Sin 2 X + X √ 2 X + 1 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{dy}{dx} = \cos^3 x \sin^2 x + x\sqrt{2x + 1}\]
योग

उत्तर

We have,
\[\frac{dy}{dx} = \cos^3 x \sin^2 x + x\sqrt{2x + 1}\]
\[ \Rightarrow dy = \left( \cos^3 x \sin^2 x + x\sqrt{2x + 1} \right)dx\]
Integrating both sides, we get
\[\int dy = \int\left( \cos^3 x \sin^2 x + x\sqrt{2x + 1} \right)dx\]
\[ \Rightarrow y = \int \cos^3 x \sin^2 x dx + \int x\sqrt{2x + 1}dx \]
\[ \Rightarrow y = I_1 + I_2 . . . . . \left( 1 \right)\]
where 
\[ I_1 = \int \cos^3 x \sin^2 x dx \]
\[ I_2 = \int x\sqrt{2x + 1}dx\]
Now,
\[ I_1 = \int \cos^3 x \sin^2 x dx\]
\[ = \int \sin^2 x \left( 1 - \sin^2 x \right)\cos x dx\]
\[\text{Putting }t = \sin x,\text{ we get }\]
\[dt = \cos x dx\] 
\[ \Rightarrow I_1 = \int t^2 \left( 1 - t^2 \right)dt\]
\[ = \int\left( t^2 - t^4 \right)dt\]
\[ = \frac{t^3}{3} - \frac{t^5}{5} + C_1 \]
\[ = \frac{\sin^3 x}{3} - \frac{\sin^5 x}{5} + C_1 \]
\[ I_2 = \int x\sqrt{2x + 1}dx\]
\[\text{Putting }t^2 = 2x + 1, \text{ we get }\]
\[2t dt = 2dx\]
\[ \Rightarrow tdt = dx\]
Now,
\[ I_2 = \int\left( \frac{t^2 - 1}{2} \right)t \times t dt\]
\[ = \frac{1}{2}\int\left( t^4 - t^2 \right) dt\]
\[ = \frac{t^5}{10} - \frac{t^3}{6} + C_2 \]
\[ = \frac{\left( 2x + 1 \right)^\frac{5}{2}}{10} - \frac{\left( 2x + 1 \right)^\frac{3}{2}}{6} + C_2\]
\[\text{Putting the values of }I_1\text{ and }I_2 \text{ in }\left( 1 \right), \text{ we get }\]
\[y = \frac{\sin^3 x}{3} - \frac{\sin^5 x}{5} + C_1 + \frac{\left( 2x + 1 \right)^\frac{5}{2}}{10} - \frac{\left( 2x + 1 \right)^\frac{3}{2}}{6} + C_2 \]
\[y = \frac{\sin^3 x}{3} - \frac{\sin^5 x}{5} + \frac{\left( 2x + 1 \right)^\frac{5}{2}}{10} - \frac{\left( 2x + 1 \right)^\frac{3}{2}}{6} + C ...............\left( \text{Where, } C = C_1 + C_2 \right)\]
\[\text{ Hence, }y = \frac{\sin^3 x}{3} - \frac{\sin^5 x}{5} + \frac{\left( 2x + 1 \right)^\frac{5}{2}}{10} - \frac{\left( 2x + 1 \right)^\frac{3}{2}}{6} +\text{ C is the solution to the given differential equation.}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.05 [पृष्ठ ३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.05 | Q 10 | पृष्ठ ३४

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

\[\frac{d^2 y}{d x^2} + 4y = 0\]

Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.


Verify that y = \[\frac{a}{x} + b\] is a solution of the differential equation
\[\frac{d^2 y}{d x^2} + \frac{2}{x}\left( \frac{dy}{dx} \right) = 0\]


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x^3 \frac{d^2 y}{d x^2} = 1\]
\[y = ax + b + \frac{1}{2x}\]

Differential equation \[\frac{dy}{dx} = y, y\left( 0 \right) = 1\]
Function y = ex


Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 0, y' \left( 0 \right) = 1\] Function y = sin x


\[\left( x + 2 \right)\frac{dy}{dx} = x^2 + 3x + 7\]

\[\frac{dy}{dx} = \sin^2 y\]

(ey + 1) cos x dx + ey sin x dy = 0


\[\frac{dy}{dx} + \frac{\cos x \sin y}{\cos y} = 0\]

Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]


Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]


\[2x\frac{dy}{dx} = 5y, y\left( 1 \right) = 1\]

In a culture the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present.


\[\frac{dy}{dx}\cos\left( x - y \right) = 1\]

\[x\frac{dy}{dx} = x + y\]

y ex/y dx = (xex/y + y) dy


(y2 − 2xy) dx = (x2 − 2xy) dy


Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y = e^{- 2x} \sin x, y\left( 0 \right) = 0\]


In a culture, the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?


Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\]  at any point (x, y) on it.


Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of  radium to decompose?


Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\]  are rectangular hyperbola.


The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by


The solution of the differential equation y1 y3 = y22 is


Which of the following transformations reduce the differential equation \[\frac{dz}{dx} + \frac{z}{x}\log z = \frac{z}{x^2} \left( \log z \right)^2\] into the form \[\frac{du}{dx} + P\left( x \right) u = Q\left( x \right)\]


Solve the differential equation:

`"x"("dy")/("dx")+"y"=3"x"^2-2`


Choose the correct option from the given alternatives:

The solution of `1/"x" * "dy"/"dx" = tan^-1 "x"` is


In each of the following examples, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
y = ex  `dy/ dx= y`

Solve the following differential equation.

`(dθ)/dt  = − k (θ − θ_0)`


For the following differential equation find the particular solution.

`(x + 1) dy/dx − 1 = 2e^(−y)`,

when y = 0, x = 1


For  the following differential equation find the particular solution.

`dy/ dx = (4x + y + 1),

when  y = 1, x = 0


Solve the following differential equation.

`dy /dx +(x-2 y)/ (2x- y)= 0`


Solve the following differential equation.

(x2 − y2 ) dx + 2xy dy = 0


Choose the correct alternative.

The solution of `x dy/dx = y` log y is


Solve the following differential equation `("d"y)/("d"x)` = x2y + y


The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.


Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×