हिंदी

For the following differential equation find the particular solution. dydx=(4x+y+1),when y=1,x=0 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

For  the following differential equation find the particular solution.

`dy/ dx = (4x + y + 1),

when  y = 1, x = 0

योग

उत्तर

`dy/ dx = (4x + y + 1)` ..(i)

Put 4x + y + 1 = t …(ii)

Differentiating w.r.t. x, we get

`4 + dy/dx = dt/ dx`

∴ `dy/dx = dt/ dx - 4` .... (iii)

Substituting (ii) and (iii) in (i), we get

`dt/ dx – 4 = t`

∴ `dt/ dx = t + 4`

∴ `dt/ (t + 4) = dx`

Integrating on both sides, we get

`intdt/(t+4) = int dx`

∴ log | t + 4 | = x + c

∴ log |(4x + y + 1) + 4 | = x + c

∴ log | 4x + y + 5 | = x + c …(iv)

When y = 1, x = 0, we have

log |4(0) + 1 + 5| = 0 + c

∴ c = log |6|

Substituting c = log |6| in (iv), we get

log |4x + y + 5| = x + log |6|

∴ log |4x + y + 5 | - log |6| = x

∴ log `|(4x+y+ 5) /6 | = x`,

which is the required particular solution.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Differential Equation and Applications - Exercise 8.3 [पृष्ठ १६५]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 8 Differential Equation and Applications
Exercise 8.3 | Q 2.4 | पृष्ठ १६५

संबंधित प्रश्न

\[y\frac{d^2 x}{d y^2} = y^2 + 1\]

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} = y\]
y = ax

\[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]

Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]


Solve the following differential equation:
\[y e^\frac{x}{y} dx = \left( x e^\frac{x}{y} + y^2 \right)dy, y \neq 0\]

 


\[2x\frac{dy}{dx} = 3y, y\left( 1 \right) = 2\]

Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.


Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\] 

 


\[\left( x + y + 1 \right)\frac{dy}{dx} = 1\]

\[\frac{dy}{dx} + 1 = e^{x + y}\]

\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]


\[\frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\]

Solve the following initial value problem:-

\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]


If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.

 

Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.

 

The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).


The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by


Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .


Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]


y2 dx + (xy + x2)dy = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×