Advertisements
Advertisements
प्रश्न
For the following differential equation find the particular solution.
`dy/ dx = (4x + y + 1),
when y = 1, x = 0
उत्तर
`dy/ dx = (4x + y + 1)` ..(i)
Put 4x + y + 1 = t …(ii)
Differentiating w.r.t. x, we get
`4 + dy/dx = dt/ dx`
∴ `dy/dx = dt/ dx - 4` .... (iii)
Substituting (ii) and (iii) in (i), we get
`dt/ dx – 4 = t`
∴ `dt/ dx = t + 4`
∴ `dt/ (t + 4) = dx`
Integrating on both sides, we get
`intdt/(t+4) = int dx`
∴ log | t + 4 | = x + c
∴ log |(4x + y + 1) + 4 | = x + c
∴ log | 4x + y + 5 | = x + c …(iv)
When y = 1, x = 0, we have
log |4(0) + 1 + 5| = 0 + c
∴ c = log |6|
Substituting c = log |6| in (iv), we get
log |4x + y + 5| = x + log |6|
∴ log |4x + y + 5 | - log |6| = x
∴ log `|(4x+y+ 5) /6 | = x`,
which is the required particular solution.
APPEARS IN
संबंधित प्रश्न
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x\frac{dy}{dx} = y\]
|
y = ax |
Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]
Solve the following differential equation:
\[y e^\frac{x}{y} dx = \left( x e^\frac{x}{y} + y^2 \right)dy, y \neq 0\]
Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.
Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\]
\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]
Solve the following initial value problem:-
\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]
If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.
Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.
The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).
The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by
Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .
Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]
y2 dx + (xy + x2)dy = 0