हिंदी

If the Marginal Cost of Manufacturing a Certain Item is Given by C' (X) = D C D X = 2 + 0.15 X. Find the Total Cost Function C (X), Given that C (0) = 100. - Mathematics

Advertisements
Advertisements

प्रश्न

If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.

 
योग

उत्तर

We have, 
\[\frac{dC}{dx} = 2 + 0 . 15x\]
\[ \Rightarrow dC = \left( 2 + 0 . 15x \right)dx\]
Integrating both sides with respect to x, we get
\[C = 2x + \frac{0 . 15}{2} x^2 + K . . . . . \left( 1 \right)\]
\[\text{ At }C\left( 0 \right) = 100,\text{ we have }\]
\[100 = 2\left( 0 \right) + \frac{0 . 15}{2} \left( 0 \right)^2 + K\]
\[ \Rightarrow K = 100\]
Putting the value of T in (1), we get
\[C = 2x + \frac{0 . 15}{2} x^2 + 100\]
\[ \Rightarrow C = 0 . 075 x^2 + 2x + 100\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.11 [पृष्ठ १३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.11 | Q 8 | पृष्ठ १३४

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]


Verify that \[y = ce^{tan^{- 1}} x\]  is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]


\[\frac{1}{x}\frac{dy}{dx} = \tan^{- 1} x, x \neq 0\]

\[\sqrt{a + x} dy + x\ dx = 0\]

\[\frac{dy}{dx} = \left( e^x + 1 \right) y\]

x cos y dy = (xex log x + ex) dx


\[\frac{dy}{dx} = e^{x + y} + e^y x^3\]

(1 − x2) dy + xy dx = xy2 dx


tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y) 

 


\[\frac{dy}{dx} = y \tan x, y\left( 0 \right) = 1\]

\[2x\frac{dy}{dx} = 5y, y\left( 1 \right) = 1\]

Solve the differential equation \[x\frac{dy}{dx} + \cot y = 0\] given that \[y = \frac{\pi}{4}\], when \[x=\sqrt{2}\]


In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).


\[\frac{dy}{dx}\cos\left( x - y \right) = 1\]

\[\cos^2 \left( x - 2y \right) = 1 - 2\frac{dy}{dx}\]

\[\frac{dy}{dx} = \tan\left( x + y \right)\]

Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y = e^{- 2x} \sin x, y\left( 0 \right) = 0\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + y \tan x = 2x + x^2 \tan x, y\left( 0 \right) = 1\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]


If the interest is compounded continuously at 6% per annum, how much worth Rs 1000 will be after 10 years? How long will it take to double Rs 1000?


The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.


Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?


Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\]  at any point (x, y) on it.


Define a differential equation.


The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y = ex + 1            y'' − y' = 0


Form the differential equation representing the family of curves y = a sin (x + b), where ab are arbitrary constant.


Solve the differential equation:

`"x"("dy")/("dx")+"y"=3"x"^2-2`


The price of six different commodities for years 2009 and year 2011 are as follows: 

Commodities A B C D E F

Price in 2009 (₹)

35 80 25 30 80 x
Price in 2011 (₹) 50 y 45 70 120 105

The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.


Solve the following differential equation.

`(x + a) dy/dx = – y + a`


 `dy/dx = log x`


Solve the differential equation `("d"y)/("d"x) + y` = e−x 


Solve: `("d"y)/("d"x) + 2/xy` = x2 


Solve the following differential equation

`yx ("d"y)/("d"x)` = x2 + 2y2 


Solve the following differential equation `("d"y)/("d"x)` = x2y + y


An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.


Solve the differential equation

`x + y dy/dx` = x2 + y2


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×