Advertisements
Advertisements
प्रश्न
`dy/dx = log x`
उत्तर
`dy/dx = log x`
∴ dy = log x dx
Integrating on both sides, we get
∫ 1 dy =∫ (log x × 1) dx
∴ `y = log x ( int1dx ) – int [ d/dx (logx) int 1dx] `
∴ `y = log x(x) – int (1/x xx x ) dx`
= x log x – ∫ 1dx
∴ y = x log x – x + c
APPEARS IN
संबंधित प्रश्न
Prove that:
`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`
Show that the function y = A cos 2x − B sin 2x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 4y = 0\].
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.
The differential equation of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C\] is
Which of the following transformations reduce the differential equation \[\frac{dz}{dx} + \frac{z}{x}\log z = \frac{z}{x^2} \left( \log z \right)^2\] into the form \[\frac{du}{dx} + P\left( x \right) u = Q\left( x \right)\]
y2 dx + (x2 − xy + y2) dy = 0
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
`y=sqrt(a^2-x^2)` `x+y(dy/dx)=0`
Solve the following differential equation.
y2 dx + (xy + x2 ) dy = 0
The solution of `dy/ dx` = 1 is ______
Choose the correct alternative.
The solution of `x dy/dx = y` log y is
Choose the correct alternative.
Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in
Solve the differential equation:
`e^(dy/dx) = x`
A man is moving away from a tower 41.6 m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is
`d/(dx)(tan^-1 (sqrt(1 + x^2) - 1)/x)` is equal to: