हिंदी

Which of the Following Transformations Reduce the Differential Equation D Z D X + Z X Log Z = Z X 2 ( Log Z ) 2 into the Form D U D X + P ( X ) U = Q ( X ) (A) U = Log X (B) U = E - Mathematics

Advertisements
Advertisements

प्रश्न

Which of the following transformations reduce the differential equation \[\frac{dz}{dx} + \frac{z}{x}\log z = \frac{z}{x^2} \left( \log z \right)^2\] into the form \[\frac{du}{dx} + P\left( x \right) u = Q\left( x \right)\]

विकल्प

  • u = log x

  • u = ez

  • u = (log z)−1

  • u = (log z)2

MCQ

उत्तर

u = (log z)−1

 

\[\text{Given }\frac{dz}{dx} + \frac{z}{x}\log z = \frac{z}{x^2} \left( \log z \right)^2 . . . . . . . . \left( 1 \right)\]
\[\text{ Let }u = \left( \log z \right)^{- 1} \]
\[\frac{du}{dx} = - \frac{1}{\left( \log z \right)^2} \times \frac{1}{z} \times \frac{dz}{dx}\]
\[\frac{dz}{dx} = - z \left( \log z \right)^2 \frac{du}{dx}\]
\[\text{ Substituting the value of }\frac{dz}{dx}\text{ from equation }(1)\text{ we get, }\]
\[ \therefore - z \left( \log z \right)^2 \frac{du}{dx} + \frac{z}{x}\log z = \frac{z}{x^2} \left( \log z \right)^2 \]
\[\frac{du}{dx} - \frac{1}{x}\frac{1}{\log z} = - \frac{1}{x^2}\]
\[\frac{du}{dx} - \frac{1}{x} \left( \log z \right)^{- 1} = - \frac{1}{x^2}\]
\[\frac{du}{dx} - \frac{1}{x}u = - \frac{1}{x^2}\]
It can be written as,
\[\frac{du}{dx} + p\left( x \right)u = Q\left( x \right)\]
\[\text{ where, }p\left( x \right) = - \frac{1}{x}\]
\[ q\left( x \right) = - \frac{1}{x^2}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - MCQ [पृष्ठ १४१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
MCQ | Q 24 | पृष्ठ १४१

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]


Verify that \[y = e^{m \cos^{- 1} x}\] satisfies the differential equation \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - m^2 y = 0\]


\[\frac{dy}{dx} = x^2 + x - \frac{1}{x}, x \neq 0\]

\[\frac{dy}{dx} = x^5 \tan^{- 1} \left( x^3 \right)\]

\[\left( 1 + x^2 \right)\frac{dy}{dx} - x = 2 \tan^{- 1} x\]

\[\frac{dy}{dx} = x e^x - \frac{5}{2} + \cos^2 x\]

\[\sin\left( \frac{dy}{dx} \right) = k ; y\left( 0 \right) = 1\]

C' (x) = 2 + 0.15 x ; C(0) = 100


\[x\frac{dy}{dx} + 1 = 0 ; y \left( - 1 \right) = 0\]

\[\frac{dy}{dx} = 1 - x + y - xy\]

(y2 + 1) dx − (x2 + 1) dy = 0


dy + (x + 1) (y + 1) dx = 0


\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

\[\frac{dy}{dx} = y \tan 2x, y\left( 0 \right) = 2\] 

\[2\left( y + 3 \right) - xy\frac{dy}{dx} = 0\], y(1) = −2

Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.


\[\left( x + y \right)^2 \frac{dy}{dx} = 1\]

x2 dy + y (x + y) dx = 0


\[\frac{dy}{dx} = \frac{y - x}{y + x}\]

\[\frac{dy}{dx} = \frac{x}{2y + x}\]

Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]


Solve the following initial value problem:-

\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]


Write the differential equation obtained by eliminating the arbitrary constant C in the equation x2 − y2 = C2.


The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by


If a + ib = `("x" + "iy")/("x" - "iy"),` prove that `"a"^2 +"b"^2 = 1` and `"b"/"a" = (2"xy")/("x"^2 - "y"^2)`


Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.


Solve the following differential equation.

`dy/dx = x^2 y + y`


For the following differential equation find the particular solution.

`(x + 1) dy/dx − 1 = 2e^(−y)`,

when y = 0, x = 1


Solve the following differential equation.

(x2 − y2 ) dx + 2xy dy = 0


Solve the following differential equation.

`dy/dx + y = e ^-x`


Solve the following differential equation.

`dy/dx + y` = 3


Choose the correct alternative.

The differential equation of y = `k_1 + k_2/x` is


Choose the correct alternative.

The solution of `x dy/dx = y` log y is


Solve:

(x + y) dy = a2 dx


Choose the correct alternative:

Solution of the equation `x("d"y)/("d"x)` = y log y is


The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______


Solve the following differential equation 

sec2 x tan y dx + sec2 y tan x dy = 0

Solution: sec2 x tan y dx + sec2 y tan x dy = 0

∴ `(sec^2x)/tanx  "d"x + square` = 0

Integrating, we get

`square + int (sec^2y)/tany  "d"y` = log c

Each of these integral is of the type

`int ("f'"(x))/("f"(x))  "d"x` = log |f(x)| + log c

∴ the general solution is

`square + log |tan y|` = log c

∴ log |tan x . tan y| = log c

`square`

This is the general solution.


Solve the following differential equation `("d"y)/("d"x)` = cos(x + y)

Solution: `("d"y)/("d"x)` = cos(x + y)    ......(1)

Put `square`

∴ `1 + ("d"y)/("d"x) = "dv"/("d"x)`

∴ `("d"y)/("d"x) = "dv"/("d"x) - 1`

∴ (1) becomes `"dv"/("d"x) - 1` = cos v

∴ `"dv"/("d"x)` = 1 + cos v

∴ `square` dv = dx

Integrating, we get

`int 1/(1 + cos "v")  "d"v = int  "d"x`

∴ `int 1/(2cos^2 ("v"/2))  "dv" = int  "d"x`

∴ `1/2 int square  "dv" = int  "d"x`

∴ `1/2* (tan("v"/2))/(1/2)` = x + c

∴ `square` = x + c


Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×