Advertisements
Advertisements
प्रश्न
Which of the following transformations reduce the differential equation \[\frac{dz}{dx} + \frac{z}{x}\log z = \frac{z}{x^2} \left( \log z \right)^2\] into the form \[\frac{du}{dx} + P\left( x \right) u = Q\left( x \right)\]
विकल्प
u = log x
u = ez
u = (log z)−1
u = (log z)2
उत्तर
u = (log z)−1
\[\text{Given }\frac{dz}{dx} + \frac{z}{x}\log z = \frac{z}{x^2} \left( \log z \right)^2 . . . . . . . . \left( 1 \right)\]
\[\text{ Let }u = \left( \log z \right)^{- 1} \]
\[\frac{du}{dx} = - \frac{1}{\left( \log z \right)^2} \times \frac{1}{z} \times \frac{dz}{dx}\]
\[\frac{dz}{dx} = - z \left( \log z \right)^2 \frac{du}{dx}\]
\[\text{ Substituting the value of }\frac{dz}{dx}\text{ from equation }(1)\text{ we get, }\]
\[ \therefore - z \left( \log z \right)^2 \frac{du}{dx} + \frac{z}{x}\log z = \frac{z}{x^2} \left( \log z \right)^2 \]
\[\frac{du}{dx} - \frac{1}{x}\frac{1}{\log z} = - \frac{1}{x^2}\]
\[\frac{du}{dx} - \frac{1}{x} \left( \log z \right)^{- 1} = - \frac{1}{x^2}\]
\[\frac{du}{dx} - \frac{1}{x}u = - \frac{1}{x^2}\]
It can be written as,
\[\frac{du}{dx} + p\left( x \right)u = Q\left( x \right)\]
\[\text{ where, }p\left( x \right) = - \frac{1}{x}\]
\[ q\left( x \right) = - \frac{1}{x^2}\]
APPEARS IN
संबंधित प्रश्न
Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]
Verify that \[y = e^{m \cos^{- 1} x}\] satisfies the differential equation \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - m^2 y = 0\]
C' (x) = 2 + 0.15 x ; C(0) = 100
(y2 + 1) dx − (x2 + 1) dy = 0
dy + (x + 1) (y + 1) dx = 0
Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
x2 dy + y (x + y) dx = 0
Solve the following initial value problem:-
\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]
Solve the following initial value problem:-
\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]
Write the differential equation obtained by eliminating the arbitrary constant C in the equation x2 − y2 = C2.
The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by
If a + ib = `("x" + "iy")/("x" - "iy"),` prove that `"a"^2 +"b"^2 = 1` and `"b"/"a" = (2"xy")/("x"^2 - "y"^2)`
Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.
Solve the following differential equation.
`dy/dx = x^2 y + y`
For the following differential equation find the particular solution.
`(x + 1) dy/dx − 1 = 2e^(−y)`,
when y = 0, x = 1
Solve the following differential equation.
(x2 − y2 ) dx + 2xy dy = 0
Solve the following differential equation.
`dy/dx + y = e ^-x`
Solve the following differential equation.
`dy/dx + y` = 3
Choose the correct alternative.
The differential equation of y = `k_1 + k_2/x` is
Choose the correct alternative.
The solution of `x dy/dx = y` log y is
Solve:
(x + y) dy = a2 dx
Choose the correct alternative:
Solution of the equation `x("d"y)/("d"x)` = y log y is
The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______
Solve the following differential equation
sec2 x tan y dx + sec2 y tan x dy = 0
Solution: sec2 x tan y dx + sec2 y tan x dy = 0
∴ `(sec^2x)/tanx "d"x + square` = 0
Integrating, we get
`square + int (sec^2y)/tany "d"y` = log c
Each of these integral is of the type
`int ("f'"(x))/("f"(x)) "d"x` = log |f(x)| + log c
∴ the general solution is
`square + log |tan y|` = log c
∴ log |tan x . tan y| = log c
`square`
This is the general solution.
Solve the following differential equation `("d"y)/("d"x)` = cos(x + y)
Solution: `("d"y)/("d"x)` = cos(x + y) ......(1)
Put `square`
∴ `1 + ("d"y)/("d"x) = "dv"/("d"x)`
∴ `("d"y)/("d"x) = "dv"/("d"x) - 1`
∴ (1) becomes `"dv"/("d"x) - 1` = cos v
∴ `"dv"/("d"x)` = 1 + cos v
∴ `square` dv = dx
Integrating, we get
`int 1/(1 + cos "v") "d"v = int "d"x`
∴ `int 1/(2cos^2 ("v"/2)) "dv" = int "d"x`
∴ `1/2 int square "dv" = int "d"x`
∴ `1/2* (tan("v"/2))/(1/2)` = x + c
∴ `square` = x + c
Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.