हिंदी

D Y D X = X E X − 5 2 + Cos 2 X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{dy}{dx} = x e^x - \frac{5}{2} + \cos^2 x\]
योग

उत्तर

We have,
\[\frac{dy}{dx} = x\ e^x - \frac{5}{2} + \cos^2 x\]
\[ \Rightarrow \frac{dy}{dx} = x\ e^x - \frac{5}{2} + \frac{\cos 2x}{2} + \frac{1}{2}\]
\[ \Rightarrow \frac{dy}{dx} = x\ e^x + \frac{\cos 2x}{2} - 2\]
\[ \Rightarrow dy = \left( x\ e^x + \frac{\cos 2x}{2} - 2 \right)dx\]
Integrating both sides, we get
\[\int dy = \int\left( x\ e^x + \frac{\cos 2x}{2} - 2 \right)dx\]
\[ \Rightarrow y = \int x\ e^x dx + \frac{1}{2}\int\cos 2x dx - 2\int dx\]
\[ \Rightarrow y = x\int e^x dx - \int\left[ \frac{d}{dx}\left( x \right)\int e^x dx \right]dx + \frac{1}{2} \times \frac{\sin 2x}{2} - 2x\]
\[ \Rightarrow y = x\ e^x - e^x + \frac{1}{4}\sin 2x - 2x + C\]
\[\text{ Hence, }y = x\ e^x - e^x + \frac{1}{4}\sin 2x - 2x +\text{ C is the solution to the given differential equation.}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.05 [पृष्ठ ३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.05 | Q 20 | पृष्ठ ३४

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

\[\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 + xy = 0\]

Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.


Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]


Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.


Show that the differential equation of which \[y = 2\left( x^2 - 1 \right) + c e^{- x^2}\]  is a solution is \[\frac{dy}{dx} + 2xy = 4 x^3\]


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x^3 \frac{d^2 y}{d x^2} = 1\]
\[y = ax + b + \frac{1}{2x}\]

\[\frac{dy}{dx} + 2x = e^{3x}\]

\[\left( x + 2 \right)\frac{dy}{dx} = x^2 + 3x + 7\]

\[x\frac{dy}{dx} + 1 = 0 ; y \left( - 1 \right) = 0\]

\[5\frac{dy}{dx} = e^x y^4\]

Solve the differential equation \[\frac{dy}{dx} = e^{x + y} + x^2 e^y\].

xy dy = (y − 1) (x + 1) dx


\[\sqrt{1 + x^2} dy + \sqrt{1 + y^2} dx = 0\]

\[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\]

\[\cos x \cos y\frac{dy}{dx} = - \sin x \sin y\]

\[\frac{dy}{dx} + \frac{\cos x \sin y}{\cos y} = 0\]

\[xy\frac{dy}{dx} = y + 2, y\left( 2 \right) = 0\]

\[\frac{dy}{dx} = 1 + x + y^2 + x y^2\] when y = 0, x = 0

(x + y) (dx − dy) = dx + dy


\[2xy\frac{dy}{dx} = x^2 + y^2\]

\[xy\frac{dy}{dx} = x^2 - y^2\]

In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]


The tangent at any point (x, y) of a curve makes an angle tan−1(2x + 3y) with x-axis. Find the equation of the curve if it passes through (1, 2).


The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.


Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of  radium to decompose?


Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\]  are rectangular hyperbola.


Define a differential equation.


If sin x is an integrating factor of the differential equation \[\frac{dy}{dx} + Py = Q\], then write the value of P.


The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when


Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]


Determine the order and degree of the following differential equations.

Solution D.E.
y = 1 − logx `x^2(d^2y)/dx^2 = 1`

Solve the following differential equation.

`dy /dx +(x-2 y)/ (2x- y)= 0`


Choose the correct alternative.

The differential equation of y = `k_1 + k_2/x` is


Choose the correct alternative.

The solution of `x dy/dx = y` log y is


y dx – x dy + log x dx = 0


Solve the following differential equation 

sec2 x tan y dx + sec2 y tan x dy = 0

Solution: sec2 x tan y dx + sec2 y tan x dy = 0

∴ `(sec^2x)/tanx  "d"x + square` = 0

Integrating, we get

`square + int (sec^2y)/tany  "d"y` = log c

Each of these integral is of the type

`int ("f'"(x))/("f"(x))  "d"x` = log |f(x)| + log c

∴ the general solution is

`square + log |tan y|` = log c

∴ log |tan x . tan y| = log c

`square`

This is the general solution.


Find the particular solution of the following differential equation

`("d"y)/("d"x)` = e2y cos x, when x = `pi/6`, y = 0.

Solution: The given D.E. is `("d"y)/("d"x)` = e2y cos x

∴ `1/"e"^(2y)  "d"y` = cos x dx

Integrating, we get

`int square  "d"y` = cos x dx

∴ `("e"^(-2y))/(-2)` = sin x + c1

∴ e–2y = – 2sin x – 2c1

∴ `square` = c, where c = – 2c

This is general solution.

When x = `pi/6`, y = 0, we have

`"e"^0 + 2sin  pi/6` = c

∴ c = `square`

∴ particular solution is `square`


`d/(dx)(tan^-1  (sqrt(1 + x^2) - 1)/x)` is equal to:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×