Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[\frac{dy}{dx} = x\ e^x - \frac{5}{2} + \cos^2 x\]
\[ \Rightarrow \frac{dy}{dx} = x\ e^x - \frac{5}{2} + \frac{\cos 2x}{2} + \frac{1}{2}\]
\[ \Rightarrow \frac{dy}{dx} = x\ e^x + \frac{\cos 2x}{2} - 2\]
\[ \Rightarrow dy = \left( x\ e^x + \frac{\cos 2x}{2} - 2 \right)dx\]
Integrating both sides, we get
\[\int dy = \int\left( x\ e^x + \frac{\cos 2x}{2} - 2 \right)dx\]
\[ \Rightarrow y = \int x\ e^x dx + \frac{1}{2}\int\cos 2x dx - 2\int dx\]
\[ \Rightarrow y = x\int e^x dx - \int\left[ \frac{d}{dx}\left( x \right)\int e^x dx \right]dx + \frac{1}{2} \times \frac{\sin 2x}{2} - 2x\]
\[ \Rightarrow y = x\ e^x - e^x + \frac{1}{4}\sin 2x - 2x + C\]
\[\text{ Hence, }y = x\ e^x - e^x + \frac{1}{4}\sin 2x - 2x +\text{ C is the solution to the given differential equation.}\]
APPEARS IN
संबंधित प्रश्न
Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.
Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]
Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.
Show that the differential equation of which \[y = 2\left( x^2 - 1 \right) + c e^{- x^2}\] is a solution is \[\frac{dy}{dx} + 2xy = 4 x^3\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x^3 \frac{d^2 y}{d x^2} = 1\]
|
\[y = ax + b + \frac{1}{2x}\]
|
xy dy = (y − 1) (x + 1) dx
(x + y) (dx − dy) = dx + dy
In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]
The tangent at any point (x, y) of a curve makes an angle tan−1(2x + 3y) with x-axis. Find the equation of the curve if it passes through (1, 2).
The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.
Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of radium to decompose?
Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\] are rectangular hyperbola.
Define a differential equation.
If sin x is an integrating factor of the differential equation \[\frac{dy}{dx} + Py = Q\], then write the value of P.
The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when
Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]
Determine the order and degree of the following differential equations.
Solution | D.E. |
y = 1 − logx | `x^2(d^2y)/dx^2 = 1` |
Solve the following differential equation.
`dy /dx +(x-2 y)/ (2x- y)= 0`
Choose the correct alternative.
The differential equation of y = `k_1 + k_2/x` is
Choose the correct alternative.
The solution of `x dy/dx = y` log y is
y dx – x dy + log x dx = 0
Solve the following differential equation
sec2 x tan y dx + sec2 y tan x dy = 0
Solution: sec2 x tan y dx + sec2 y tan x dy = 0
∴ `(sec^2x)/tanx "d"x + square` = 0
Integrating, we get
`square + int (sec^2y)/tany "d"y` = log c
Each of these integral is of the type
`int ("f'"(x))/("f"(x)) "d"x` = log |f(x)| + log c
∴ the general solution is
`square + log |tan y|` = log c
∴ log |tan x . tan y| = log c
`square`
This is the general solution.
Find the particular solution of the following differential equation
`("d"y)/("d"x)` = e2y cos x, when x = `pi/6`, y = 0.
Solution: The given D.E. is `("d"y)/("d"x)` = e2y cos x
∴ `1/"e"^(2y) "d"y` = cos x dx
Integrating, we get
`int square "d"y` = cos x dx
∴ `("e"^(-2y))/(-2)` = sin x + c1
∴ e–2y = – 2sin x – 2c1
∴ `square` = c, where c = – 2c1
This is general solution.
When x = `pi/6`, y = 0, we have
`"e"^0 + 2sin pi/6` = c
∴ c = `square`
∴ particular solution is `square`
`d/(dx)(tan^-1 (sqrt(1 + x^2) - 1)/x)` is equal to: