हिंदी

D Y D X = X ( 2 Log X + 1 ) Sin Y + Y Cos Y - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\]

उत्तर

We have,
\[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\]
\[\Rightarrow \left( \sin y + y \cos y \right) dy = x\left( 2 \log x + 1 \right) dx\]
Integrating both sides, we get
\[\int\left( \sin y + y \cos y \right) dy = \int x\left( 2 \log x + 1 \right) dx\]
\[ \Rightarrow \int\sin y dy + \int y \cos y dy = 2\int x \log x dx + \int x dx\]
\[ \Rightarrow - \cos y + \left[ y\int\cos y dy - \int\left\{ \frac{d}{dy}\left( y \right)\int \cos y dy \right\}dy \right] = 2\left[ \log x\int x dx - \int\left\{ \frac{d}{dx}\left( \log x \right)\int x dx \right\}dx \right] + \frac{x^2}{2}\]
\[ \Rightarrow - \cos y + \left[ y \sin y - \int\sin y dy \right] = 2\left[ \log x \times \frac{x^2}{2} - \int\frac{1}{x} \times \frac{x^2}{2} \right] + \frac{x^2}{2}\]
\[ \Rightarrow - \cos y + y \sin y + \cos y = x^2 \log x - \frac{x^2}{2} + \frac{x^2}{2} + C\]
\[ \Rightarrow y \sin y = x^2 \log x + C\]
\[\text{ Hence, } y \sin y = x^2 \log x +\text{ C is the required solution }.\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.07 [पृष्ठ ५५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.07 | Q 20 | पृष्ठ ५५

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

\[\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 + xy = 0\]

Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.


Verify that y = 4 sin 3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 9y = 0\]


Verify that y2 = 4a (x + a) is a solution of the differential equations
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]


Show that the differential equation of which \[y = 2\left( x^2 - 1 \right) + c e^{- x^2}\]  is a solution is \[\frac{dy}{dx} + 2xy = 4 x^3\]


Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2


\[\left( x^2 + 1 \right)\frac{dy}{dx} = 1\]

\[5\frac{dy}{dx} = e^x y^4\]

Solve the differential equation \[\frac{dy}{dx} = e^{x + y} + x^2 e^y\].

(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0


Solve the following differential equation:
\[y e^\frac{x}{y} dx = \left( x e^\frac{x}{y} + y^2 \right)dy, y \neq 0\]

 


\[xy\frac{dy}{dx} = \left( x + 2 \right)\left( y + 2 \right), y\left( 1 \right) = - 1\]

Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.


The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after `t` seconds.


In a bank principal increases at the rate of r% per year. Find the value of r if ₹100 double itself in 10 years (loge 2 = 0.6931).


In a culture the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present.


(x + y) (dx − dy) = dx + dy


x2 dy + y (x + y) dx = 0


y ex/y dx = (xex/y + y) dy


\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]

 

Solve the following initial value problem:
\[x\frac{dy}{dx} + y = x \cos x + \sin x, y\left( \frac{\pi}{2} \right) = 1\]


A population grows at the rate of 5% per year. How long does it take for the population to double?


In a culture, the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?


Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.


The equation of the curve whose slope is given by \[\frac{dy}{dx} = \frac{2y}{x}; x > 0, y > 0\] and which passes through the point (1, 1) is


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y = ex + 1            y'' − y' = 0


Solve the differential equation:

`"x"("dy")/("dx")+"y"=3"x"^2-2`


Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2). 


Determine the order and degree of the following differential equations.

Solution D.E.
y = 1 − logx `x^2(d^2y)/dx^2 = 1`

Solve the following differential equation.

`(dθ)/dt  = − k (θ − θ_0)`


For each of the following differential equations find the particular solution.

`y (1 + logx)dx/dy - x log x = 0`,

when x=e, y = e2.


Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0


For the differential equation, find the particular solution

`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0


Solve the following differential equation y2dx + (xy + x2) dy = 0


Choose the correct alternative:

General solution of `y - x ("d"y)/("d"x)` = 0 is


Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0


Solve the following differential equation 

sec2 x tan y dx + sec2 y tan x dy = 0

Solution: sec2 x tan y dx + sec2 y tan x dy = 0

∴ `(sec^2x)/tanx  "d"x + square` = 0

Integrating, we get

`square + int (sec^2y)/tany  "d"y` = log c

Each of these integral is of the type

`int ("f'"(x))/("f"(x))  "d"x` = log |f(x)| + log c

∴ the general solution is

`square + log |tan y|` = log c

∴ log |tan x . tan y| = log c

`square`

This is the general solution.


An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×