Advertisements
Advertisements
प्रश्न
उत्तर
\[\frac{dy}{dx} = \frac{e^x \left( \sin^2 x + \sin 2x \right)}{y\left( 2\log y + 1 \right)}\]
\[ \Rightarrow y\left( 2\log y + 1 \right)dy = e^x \left( \sin^2 x + \sin 2x \right)dx\]
\[ \Rightarrow \left( 2y \log y + y \right)dy = \left( e^x \sin^2 x + e^x \sin 2x \right)dx\]
\[ \Rightarrow 2y \log y\ dy + y\ dy = e^x \sin^2 x dx + e^x \sin 2x dx\]
Integrating both sides, we get
\[ \Rightarrow 2\left[ \log y\int y\ dy - \int\left\{ \frac{d}{dy}\left( \log y \right)\int y dy \right\} \right]dy + \int y dy = \sin^2 x\int e^x\ dx - \int\left[ \frac{d}{dx}\left( \sin^2 x \right)\int e^x dx \right]dx + \int e^x \sin 2x\ dx\]
\[ \Rightarrow 2\left[ \log y \left( \frac{y^2}{2} \right) - \int\left( \frac{1}{y} \right)\frac{y^2}{2}dy \right] + \int y\ dy = \sin^2 x e^x - \int\left[ 2\sin x\cos x e^x \right]dx + \int e^x \sin 2x\ dx + C\]
\[ \Rightarrow y^2 \log y - \int y\ dy + \int y\ dy = e^x \sin^2 x - \int e^x \sin 2x\ dx + \int e^x \sin 2x\ dx + C\]
\[ \Rightarrow y^2 \log y = e^x \sin^2 x + C\]
APPEARS IN
संबंधित प्रश्न
Verify that y = cx + 2c2 is a solution of the differential equation
Verify that \[y = e^{m \cos^{- 1} x}\] satisfies the differential equation \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - m^2 y = 0\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x\frac{dy}{dx} + y = y^2\]
|
\[y = \frac{a}{x + a}\]
|
Differential equation \[\frac{dy}{dx} = y, y\left( 0 \right) = 1\]
Function y = ex
(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0
(y2 + 1) dx − (x2 + 1) dy = 0
Solve the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + \left( 1 + y^2 \right) = 0\], given that y = 1, when x = 0.
In a bank principal increases at the rate of r% per year. Find the value of r if ₹100 double itself in 10 years (loge 2 = 0.6931).
\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]
Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]
Solve the following initial value problem:
\[x\frac{dy}{dx} + y = x \cos x + \sin x, y\left( \frac{\pi}{2} \right) = 1\]
Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?
Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\] and tangent at any point of which makes an angle tan−1 \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.
Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.
Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]
The differential equation satisfied by ax2 + by2 = 1 is
Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.
If a + ib = `("x" + "iy")/("x" - "iy"),` prove that `"a"^2 +"b"^2 = 1` and `"b"/"a" = (2"xy")/("x"^2 - "y"^2)`
Find the particular solution of the differential equation `"dy"/"dx" = "xy"/("x"^2+"y"^2),`given that y = 1 when x = 0
For the following differential equation find the particular solution.
`dy/ dx = (4x + y + 1),
when y = 1, x = 0
A solution of a differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called ___________ solution.
x2y dx – (x3 + y3) dy = 0
`dy/dx = log x`
Solve the following differential equation `("d"y)/("d"x)` = x2y + y
Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.