हिंदी

Form the Differential Equation Representing the Family of Parabolas Having Vertex at Origin and Axis Along Positive Direction of X-axis. - Mathematics

Advertisements
Advertisements

प्रश्न

Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.

योग

उत्तर

The equation of the parabola having vertex at origin and axis along the positive direction of x-axis is given by

y2 =4ax         .....(1)

Since there is only one parameter, so we differentiate it only once.

Differentiating with respect to x, we get

\[2y\frac{dy}{dx} = 4a\]

Substituting the value of 4a in (1), we get

\[y^2 = 2y\frac{dy}{dx} \times x\]
\[ \Rightarrow y^2 = 2xy\frac{dy}{dx}\]
\[ \Rightarrow y^2 - 2xy\frac{dy}{dx} = 0\]
\[\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Revision Exercise [पृष्ठ १४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Revision Exercise | Q 6 | पृष्ठ १४५

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.


Differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} = 0, y \left( 0 \right) = 2, y'\left( 0 \right) = 1\]

Function y = ex + 1


\[\frac{1}{x}\frac{dy}{dx} = \tan^{- 1} x, x \neq 0\]

\[\frac{dy}{dx} = x \log x\]

\[\frac{dy}{dx} = x e^x - \frac{5}{2} + \cos^2 x\]

\[\frac{dy}{dx} = 1 - x + y - xy\]

\[\frac{dy}{dx} = y \sin 2x, y\left( 0 \right) = 1\]

\[\frac{dy}{dx} = 1 + x + y^2 + x y^2\] when y = 0, x = 0

Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.


The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after `t` seconds.


\[\cos^2 \left( x - 2y \right) = 1 - 2\frac{dy}{dx}\]

\[\frac{dy}{dx} = \frac{y^2 - x^2}{2xy}\]

Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.

 


Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]


Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.

 

Find the equation of the curve which passes through the origin and has the slope x + 3y− 1 at any point (x, y) on it.


The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.


The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by


The equation of the curve whose slope is given by \[\frac{dy}{dx} = \frac{2y}{x}; x > 0, y > 0\] and which passes through the point (1, 1) is


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y \sin x = 1\], is


Which of the following differential equations has y = C1 ex + C2 ex as the general solution?


y2 dx + (x2 − xy + y2) dy = 0


Verify that the function y = e−3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + \frac{dy}{dx} - 6y = 0.\]


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y = ex + 1            y'' − y' = 0


Choose the correct option from the given alternatives:

The solution of `1/"x" * "dy"/"dx" = tan^-1 "x"` is


Solve the following differential equation.

`dy /dx +(x-2 y)/ (2x- y)= 0`


Solve the following differential equation.

(x2 − y2 ) dx + 2xy dy = 0


Solve the following differential equation.

`xy  dy/dx = x^2 + 2y^2`


Solve the following differential equation.

`(x + y) dy/dx = 1`


Solve the following differential equation.

`(x + a) dy/dx = – y + a`


x2y dx – (x3 + y3) dy = 0


`xy dy/dx  = x^2 + 2y^2`


Solve the following differential equation

`x^2  ("d"y)/("d"x)` = x2 + xy − y2 


Choose the correct alternative:

Differential equation of the function c + 4yx = 0 is


Choose the correct alternative:

General solution of `y - x ("d"y)/("d"x)` = 0 is


The function y = ex is solution  ______ of differential equation


Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.


Solution of `x("d"y)/("d"x) = y + x tan  y/x` is `sin(y/x)` = cx


`d/(dx)(tan^-1  (sqrt(1 + x^2) - 1)/x)` is equal to:


Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×