English

Form the Differential Equation Representing the Family of Parabolas Having Vertex at Origin and Axis Along Positive Direction of X-axis. - Mathematics

Advertisements
Advertisements

Question

Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.

Sum

Solution

The equation of the parabola having vertex at origin and axis along the positive direction of x-axis is given by

y2 =4ax         .....(1)

Since there is only one parameter, so we differentiate it only once.

Differentiating with respect to x, we get

\[2y\frac{dy}{dx} = 4a\]

Substituting the value of 4a in (1), we get

\[y^2 = 2y\frac{dy}{dx} \times x\]
\[ \Rightarrow y^2 = 2xy\frac{dy}{dx}\]
\[ \Rightarrow y^2 - 2xy\frac{dy}{dx} = 0\]
\[\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Revision Exercise [Page 145]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Revision Exercise | Q 6 | Page 145

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

\[\sqrt{1 + \left( \frac{dy}{dx} \right)^2} = \left( c\frac{d^2 y}{d x^2} \right)^{1/3}\]

\[\sqrt[3]{\frac{d^2 y}{d x^2}} = \sqrt{\frac{dy}{dx}}\]

\[x^2 \left( \frac{d^2 y}{d x^2} \right)^3 + y \left( \frac{dy}{dx} \right)^4 + y^4 = 0\]

Show that y = ax3 + bx2 + c is a solution of the differential equation \[\frac{d^3 y}{d x^3} = 6a\].

 


Verify that y2 = 4a (x + a) is a solution of the differential equations
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]


Verify that \[y = ce^{tan^{- 1}} x\]  is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]


Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]

 


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x^3 \frac{d^2 y}{d x^2} = 1\]
\[y = ax + b + \frac{1}{2x}\]

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[y = \left( \frac{dy}{dx} \right)^2\]
\[y = \frac{1}{4} \left( x \pm a \right)^2\]

\[\sin^4 x\frac{dy}{dx} = \cos x\]

\[\frac{dy}{dx} + \frac{1 + y^2}{y} = 0\]

\[\frac{dy}{dx} = \left( e^x + 1 \right) y\]

\[\frac{dy}{dx} = \frac{e^x \left( \sin^2 x + \sin 2x \right)}{y\left( 2 \log y + 1 \right)}\]

\[\frac{dy}{dx} = \left( \cos^2 x - \sin^2 x \right) \cos^2 y\]

\[\frac{dy}{dx} = y \tan 2x, y\left( 0 \right) = 2\] 

\[\cos y\frac{dy}{dx} = e^x , y\left( 0 \right) = \frac{\pi}{2}\]

Solve the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + \left( 1 + y^2 \right) = 0\], given that y = 1, when x = 0.


Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.


Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\] 

 


y ex/y dx = (xex/y + y) dy


Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.

 


Solve the following initial value problem:-

\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]


In a culture, the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?


The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given the number triples in 5 hrs, find how many bacteria will be present after 10 hours. Also find the time necessary for the number of bacteria to be 10 times the number of initial present.


Find the equation of the curve which passes through the point (2, 2) and satisfies the differential equation
\[y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}\]


Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\]  and tangent at any point of which makes an angle tan−1  \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.


Find the equation of the curve which passes through the origin and has the slope x + 3y− 1 at any point (x, y) on it.


The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.


Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of  radium to decompose?


The differential equation
\[\frac{dy}{dx} + Py = Q y^n , n > 2\] can be reduced to linear form by substituting


Which of the following is the integrating factor of (x log x) \[\frac{dy}{dx} + y\] = 2 log x?


Solve the following differential equation.

`(dθ)/dt  = − k (θ − θ_0)`


For  the following differential equation find the particular solution.

`dy/ dx = (4x + y + 1),

when  y = 1, x = 0


Choose the correct alternative:

Solution of the equation `x("d"y)/("d"x)` = y log y is


The function y = ex is solution  ______ of differential equation


The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.


Solve: ydx – xdy = x2ydx.


lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is


Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×