English

Solve the Differential Equation D Y D X = 2 X ( Log X + 1 ) Sin Y + Y Cos Y , Given that Y = 0, When X = 1. - Mathematics

Advertisements
Advertisements

Question

Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.

Sum

Solution

We have, 
\[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y\cos y}\]
\[ \Rightarrow \left( \sin y + y\cos y \right) dy = 2x\left( \log x + 1 \right) dx\]
Integrating both sides, we get
\[\int\left( \sin y + y\cos y \right) dy = \int2x\left( \log x + 1 \right) dx\]
\[ \Rightarrow \int\sin y\ dy + \int y\cos y\ dy = \int2x \log x\ dx + \int2x\ dx\]
\[ \Rightarrow - \cos y + \left[ y\int\cos y\ dy - \int\left\{ \frac{d}{dy}\left( y \right)\int\cos y\ dy \right\}dy \right] = 2\left[ \log x \int x\ dx - \int\left\{ \frac{d}{dx}\left( \log x \right)\int x\ dx \right\}dx \right] + x^2 \]
\[ \Rightarrow - \cos y + \left[ y \sin y + \cos y \right] = 2\left[ \log x \times \frac{x}{2}^2 - \frac{x^2}{4} \right] + x^2 + C\]
\[ \Rightarrow y \sin y = x^2 \log x - \frac{x^2}{2} + x^2 + C\]
\[ \Rightarrow y \sin y = x^2 \log x + \frac{x^2}{2} + C ..........(1)\]
\[\text{ Given:- }x = 1, y = 0 . \]
Substituting the values of x and y in (1), we get
\[ 0 = 0 + \frac{1}{2} + C\]
\[ \Rightarrow C = - \frac{1}{2}\]
Substituting the value of C in (1), we get
\[y \sin y = x^2 \log x + \frac{x^2}{2} - \frac{1}{2}\]
\[ \Rightarrow 2y \sin y = 2 x^2 \log x + x^2 - 1\]
\[\text{ Hence, }2y \sin y = 2 x^2 \log x + x^2 - 1\text{ is the required solution.} \]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.07 [Page 56]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.07 | Q 48 | Page 56

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

\[x^2 \left( \frac{d^2 y}{d x^2} \right)^3 + y \left( \frac{dy}{dx} \right)^4 + y^4 = 0\]

Verify that y = 4 sin 3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 9y = 0\]


Show that the function y = A cos 2x − B sin 2x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 4y = 0\].


Verify that y2 = 4ax is a solution of the differential equation y = x \[\frac{dy}{dx} + a\frac{dx}{dy}\]


Verify that \[y = ce^{tan^{- 1}} x\]  is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]


Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 0, y' \left( 0 \right) = 1\] Function y = sin x


(sin x + cos x) dy + (cos x − sin x) dx = 0


\[\sqrt{a + x} dy + x\ dx = 0\]

\[\left( x^3 + x^2 + x + 1 \right)\frac{dy}{dx} = 2 x^2 + x\]

C' (x) = 2 + 0.15 x ; C(0) = 100


\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y\left( 2 \right) = 0\]

\[\frac{dy}{dx} = \frac{1 - \cos 2y}{1 + \cos 2y}\]

(ey + 1) cos x dx + ey sin x dy = 0


\[\cos x \cos y\frac{dy}{dx} = - \sin x \sin y\]

Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]

 


\[\frac{dy}{dx} = 1 + x + y^2 + x y^2\] when y = 0, x = 0

\[2\left( y + 3 \right) - xy\frac{dy}{dx} = 0\], y(1) = −2

\[\frac{dy}{dx}\cos\left( x - y \right) = 1\]

\[\frac{dy}{dx} = \left( x + y \right)^2\]

(x2 − y2) dx − 2xy dy = 0


\[\frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\]

\[\left[ x\sqrt{x^2 + y^2} - y^2 \right] dx + xy\ dy = 0\]

Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]


Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\]  are rectangular hyperbola.


Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.


Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].


Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.


Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2). 


Choose the correct option from the given alternatives:

The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of


For  the following differential equation find the particular solution.

`dy/ dx = (4x + y + 1),

when  y = 1, x = 0


Solve the following differential equation.

`(x + y) dy/dx = 1`


Solve the following differential equation.

dr + (2r)dθ= 8dθ


x2y dx – (x3 + y3) dy = 0


Select and write the correct alternative from the given option for the question

Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in


Solve: `("d"y)/("d"x) + 2/xy` = x2 


Solve the following differential equation 

sec2 x tan y dx + sec2 y tan x dy = 0

Solution: sec2 x tan y dx + sec2 y tan x dy = 0

∴ `(sec^2x)/tanx  "d"x + square` = 0

Integrating, we get

`square + int (sec^2y)/tany  "d"y` = log c

Each of these integral is of the type

`int ("f'"(x))/("f"(x))  "d"x` = log |f(x)| + log c

∴ the general solution is

`square + log |tan y|` = log c

∴ log |tan x . tan y| = log c

`square`

This is the general solution.


Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.


Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×