English

Differential Equation D 2 Y D X 2 + Y = 0 , Y ( 0 ) = 0 , Y ′ ( 0 ) = 1 Function Y = Sin X - Mathematics

Advertisements
Advertisements

Question

Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 0, y' \left( 0 \right) = 1\] Function y = sin x

Sum

Solution

We have,

\[y = \sin x.............(1)\]

Differentiating both sides of (1) with respect to x, we get
\[\frac{dy}{dx} = \cos x...........(2)\]

Differentiating both sides of (2) with respect to x, we get

\[\frac{d^2 y}{d x^2} = - \sin x\]

\[ \Rightarrow \frac{d^2 y}{d x^2} = - y ..........\left[\text{Using (1)}\right]\]

⇒ \[\frac{d^2 y}{d x^2} + y = 0\]

It is the given differential equation.

Here, \[y = \sin x\] satisfies the given differential equation; hence, it is a solution.

Also, when \[x = 0, y = \sin 0 = 0,\text{ i.e. }, y\left( 0 \right) = 0\]

And, when \[x = 0, y' = \cos 0 = 1,\text{ i.e. }, y'\left( 0 \right) = 1\]

Hence, \[y = \sin x\] is the solution to the given initial value problem.

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.04 [Page 28]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.04 | Q 3 | Page 28

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Prove that:

`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`


\[\frac{d^2 y}{d x^2} + 4y = 0\]

\[x + \left( \frac{dy}{dx} \right) = \sqrt{1 + \left( \frac{dy}{dx} \right)^2}\]

Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.


Show that the differential equation of which \[y = 2\left( x^2 - 1 \right) + c e^{- x^2}\]  is a solution is \[\frac{dy}{dx} + 2xy = 4 x^3\]


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} + y = y^2\]
\[y = \frac{a}{x + a}\]

(ey + 1) cos x dx + ey sin x dy = 0


(1 − x2) dy + xy dx = xy2 dx


Solve the following differential equation:
\[y e^\frac{x}{y} dx = \left( x e^\frac{x}{y} + y^2 \right)dy, y \neq 0\]

 


\[xy\frac{dy}{dx} = y + 2, y\left( 2 \right) = 0\]

\[\frac{dy}{dx} = y \tan x, y\left( 0 \right) = 1\]

\[\frac{dy}{dx} = 1 + x^2 + y^2 + x^2 y^2 , y\left( 0 \right) = 1\]

\[\frac{dy}{dx} = \frac{y - x}{y + x}\]

2xy dx + (x2 + 2y2) dy = 0


(x + 2y) dx − (2x − y) dy = 0


\[\frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\]

Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.

 


Solve the following initial value problem:-

\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]


The rate of growth of a population is proportional to the number present. If the population of a city doubled in the past 25 years, and the present population is 100000, when will the city have a population of 500000?


The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given the number triples in 5 hrs, find how many bacteria will be present after 10 hours. Also find the time necessary for the number of bacteria to be 10 times the number of initial present.


Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\]  and tangent at any point of which makes an angle tan−1  \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.


Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.

 

Find the equation of the curve such that the portion of the x-axis cut off between the origin and the tangent at a point is twice the abscissa and which passes through the point (1, 2).


Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\]  at any point (x, y) on it.


If sin x is an integrating factor of the differential equation \[\frac{dy}{dx} + Py = Q\], then write the value of P.


Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]


If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y = ex + 1            y'' − y' = 0


Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.


Choose the correct option from the given alternatives:

The solution of `1/"x" * "dy"/"dx" = tan^-1 "x"` is


Determine the order and degree of the following differential equations.

Solution D.E.
ax2 + by2 = 5 `xy(d^2y)/dx^2+ x(dy/dx)^2 = y dy/dx`

Solve the following differential equation.

`dy/dx + 2xy = x`


The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.


Choose the correct alternative.

The solution of `x dy/dx = y` log y is


Solve the differential equation:

dr = a r dθ − θ dr


Solve

`dy/dx + 2/ x y = x^2`


For the differential equation, find the particular solution (x – y2x) dx – (y + x2y) dy = 0 when x = 2, y = 0


The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______


Solve the following differential equation `("d"y)/("d"x)` = cos(x + y)

Solution: `("d"y)/("d"x)` = cos(x + y)    ......(1)

Put `square`

∴ `1 + ("d"y)/("d"x) = "dv"/("d"x)`

∴ `("d"y)/("d"x) = "dv"/("d"x) - 1`

∴ (1) becomes `"dv"/("d"x) - 1` = cos v

∴ `"dv"/("d"x)` = 1 + cos v

∴ `square` dv = dx

Integrating, we get

`int 1/(1 + cos "v")  "d"v = int  "d"x`

∴ `int 1/(2cos^2 ("v"/2))  "dv" = int  "d"x`

∴ `1/2 int square  "dv" = int  "d"x`

∴ `1/2* (tan("v"/2))/(1/2)` = x + c

∴ `square` = x + c


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×