English

Find the Equation of the Curve Which Passes Through the Point (3, −4) and Has the Slope 2 Y X at Any Point (X, Y) on It. - Mathematics

Advertisements
Advertisements

Question

Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\]  at any point (x, y) on it.

Sum

Solution

According to the question,
\[\frac{dy}{dx} = \frac{2y}{x}\]
\[\Rightarrow \frac{1}{2y}dy = \frac{1}{x}dx\]
Integrating both sides with respect to x, we get
\[\int\frac{1}{2y}dy = \int\frac{1}{x}dx\]
\[ \Rightarrow \frac{1}{2}\log \left| y \right| = \log \left| x \right| + C\]
\[\text{ Since the curve passes through }\left( 3, - 4 \right),\text{ it satisfies the above equation . }\]
\[ \therefore \frac{1}{2}\log \left| - 4 \right| = \log \left| 3 \right| + C\]
\[ \Rightarrow \log \left| 2 \right| - \log \left| 3 \right| = C\]
\[ \Rightarrow C = \log \left| \frac{2}{3} \right|\]
Putting the value of C, we get
\[\log \left| y \right| = 2\log \left| x \right| + 2\log \left| \frac{2}{3} \right|\]
\[ \Rightarrow \log \left| y \right| = \log \left| \frac{4}{9} x^2 \right|\]
\[ \Rightarrow y = \pm \frac{4}{9} x^2 \]
\[ \Rightarrow 9y - 4 x^2 = 0\text{ or }9y + 4 x^2 = 0\]
\[\text{ The given point does not satisfy the equation }9y - 4 x^2 = 0 . \]
\[ \therefore 9y + 4 x^2 = 0\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.11 [Page 135]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.11 | Q 21 | Page 135

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

If 1, `omega` and `omega^2` are the cube roots of unity, prove `(a + b omega + c omega^2)/(c + s omega +  b omega^2) =  omega^2`


Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]

 


Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x + y\frac{dy}{dx} = 0\]
\[y = \pm \sqrt{a^2 - x^2}\]

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[y = \left( \frac{dy}{dx} \right)^2\]
\[y = \frac{1}{4} \left( x \pm a \right)^2\]

\[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]

\[\left( x + 2 \right)\frac{dy}{dx} = x^2 + 3x + 7\]

\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y\left( 2 \right) = 0\]

xy dy = (y − 1) (x + 1) dx


\[x\frac{dy}{dx} + \cot y = 0\]

\[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\]

\[\frac{dy}{dx} = \left( \cos^2 x - \sin^2 x \right) \cos^2 y\]

Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]

 


\[2x\frac{dy}{dx} = 3y, y\left( 1 \right) = 2\]

\[\cos y\frac{dy}{dx} = e^x , y\left( 0 \right) = \frac{\pi}{2}\]

Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.


The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after `t` seconds.


\[\frac{dy}{dx} = \frac{y - x}{y + x}\]

\[\frac{dy}{dx} = \frac{y^2 - x^2}{2xy}\]

(y2 − 2xy) dx = (x2 − 2xy) dy


Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]


The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.


In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]


Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.

 

Find the equation to the curve satisfying x (x + 1) \[\frac{dy}{dx} - y\]  = x (x + 1) and passing through (1, 0).


Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\]  are rectangular hyperbola.


The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).


Write the differential equation obtained by eliminating the arbitrary constant C in the equation x2 − y2 = C2.


What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?


Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].


If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]


Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.


The function y = ex is solution  ______ of differential equation


Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0


Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.


The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.


An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.


lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×