Advertisements
Advertisements
Question
The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after `t` seconds.
Solution
Let r be the radius and V be the volume of the balloon at any time 't'.
Then, we have,
\[V = \frac{4}{3} \pi r^3 \]
Given :-
\[\frac{dV}{dt} = - k ...............\left(\text{where }k > 0 \right)\]
\[ \Rightarrow \frac{d}{dt}\left( \frac{4}{3}\pi r^3 \right) = - k\]
\[ \Rightarrow 4 \pi r^2 \frac{dr}{dt} = - k\]
\[ \Rightarrow 4\pi r^2 dr = - k\ dt \]
Integrating both sides, we get
\[\int4\pi r^2 dr = - \int k\ dt \]
\[\frac{4}{3}\pi r^3 = - kt + C ............(1)\]
It is given that at t = 0, r = 3 .
\[\text{ Substituting }t = 0\text{ and }r = 3\text{ in }(1), \text{ we get }\]
\[C = 36\pi\]
\[\text{ Putting }C = 36\pi\text{ in }(1),\text{ we get }\]
\[\frac{4}{3}\pi r^3 = - kt + 36\pi .............(2)\]
It is also given that at t = 3, r = 6 .
\[\text{ Putting }t = 3\text{ and }r = 6\text{ in }(1), \text{ we get }\]
\[288 \pi = - 3k + 36\pi\]
\[ \Rightarrow k = - 84\pi\]
\[\text{ Putting }k = - 84 \pi\text{ in }(2),\text{ we get }\]
\[\frac{4}{3}\pi r^3 = 84\pi t + 36 \pi\]
\[ \Rightarrow r^3 = 63 t + 27\]
\[ \Rightarrow r = \left( 63 t + 27 \right)^\frac{1}{3} \]
APPEARS IN
RELATED QUESTIONS
Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.
Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]
Differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} = 0, y \left( 0 \right) = 2, y'\left( 0 \right) = 1\]
Function y = ex + 1
(y + xy) dx + (x − xy2) dy = 0
Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\]
(x2 − y2) dx − 2xy dy = 0
(x + 2y) dx − (2x − y) dy = 0
Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + y \tan x = 2x + x^2 \tan x, y\left( 0 \right) = 1\]
The rate of growth of a population is proportional to the number present. If the population of a city doubled in the past 25 years, and the present population is 100000, when will the city have a population of 500000?
The population of a city increases at a rate proportional to the number of inhabitants present at any time t. If the population of the city was 200000 in 1990 and 250000 in 2000, what will be the population in 2010?
In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]
Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.
Find the equation of the curve which passes through the origin and has the slope x + 3y− 1 at any point (x, y) on it.
Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of radium to decompose?
Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.
Which of the following is the integrating factor of (x log x) \[\frac{dy}{dx} + y\] = 2 log x?
Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2).
Solve the following differential equation.
`(dθ)/dt = − k (θ − θ_0)`
Solve the following differential equation.
`dy/dx + y` = 3
Solve the following differential equation.
`dy/dx + 2xy = x`
State whether the following is True or False:
The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.
`xy dy/dx = x^2 + 2y^2`
`dy/dx = log x`
Solve the differential equation sec2y tan x dy + sec2x tan y dx = 0
Solve the following differential equation `("d"y)/("d"x)` = cos(x + y)
Solution: `("d"y)/("d"x)` = cos(x + y) ......(1)
Put `square`
∴ `1 + ("d"y)/("d"x) = "dv"/("d"x)`
∴ `("d"y)/("d"x) = "dv"/("d"x) - 1`
∴ (1) becomes `"dv"/("d"x) - 1` = cos v
∴ `"dv"/("d"x)` = 1 + cos v
∴ `square` dv = dx
Integrating, we get
`int 1/(1 + cos "v") "d"v = int "d"x`
∴ `int 1/(2cos^2 ("v"/2)) "dv" = int "d"x`
∴ `1/2 int square "dv" = int "d"x`
∴ `1/2* (tan("v"/2))/(1/2)` = x + c
∴ `square` = x + c
Solve `x^2 "dy"/"dx" - xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`
lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is
The differential equation (1 + y2)x dx – (1 + x2)y dy = 0 represents a family of: