English

Form the Differential Equation of the Family of Hyperbolas Having Foci on X-axis and Centre at the Origin. - Mathematics

Advertisements
Advertisements

Question

Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.

Sum

Solution

The equation of the family of hyperbolas having the centre at the origin and foci on the x-axis is \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1............(1)\]

where \[a\text{ and }b\]  are parameters.

As this equation contains two parameters, we shall get a second-order differential equation.

Differentiating equation (1) with respect to x, we get

\[\frac{2x}{a^2} - \frac{2y}{b^2}\frac{dy}{dx} =0..........(2)\]

Differentiating equation (2) with respect to x, we get

\[\frac{2}{a^2} - \frac{2}{b^2}\left[ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right] = 0\]

\[ \Rightarrow \frac{1}{a^2} = \frac{1}{b^2}\left[ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right]\]

\[ \Rightarrow \frac{b^2}{a^2} = \left[ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right] \left......( 3 \right)\]

Now, from equation (2), we get

\[\frac{2x}{a^2} = \frac{2y}{b^2}\frac{dy}{dx}\]

\[ \Rightarrow \frac{b^2}{a^2} = \frac{y}{x}\frac{dy}{dx} ........(4)\]

From (3) and (4), we get

\[\frac{y}{x}\frac{dy}{dx} = \left[ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right]\]

\[ \Rightarrow y\frac{dy}{dx} = xy\frac{d^2 y}{d x^2} + x \left( \frac{dy}{dx} \right)^2 \]

\[ \Rightarrow xy\frac{d^2 y}{d x^2} + x \left( \frac{dy}{dx} \right)^2 - y\frac{dy}{dx} = 0\]

It is the required differential equation.

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.02 [Page 17]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.02 | Q 18 | Page 17

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

\[\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 + xy = 0\]

Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]

 


Verify that y = log \[\left( x + \sqrt{x^2 + a^2} \right)^2\]  satisfies the differential equation \[\left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 0\]


Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]

 


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x + y\frac{dy}{dx} = 0\]
\[y = \pm \sqrt{a^2 - x^2}\]

Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex


\[\frac{dy}{dx} = x^5 + x^2 - \frac{2}{x}, x \neq 0\]

\[\left( x + 2 \right)\frac{dy}{dx} = x^2 + 3x + 7\]

\[\left( 1 + x^2 \right)\frac{dy}{dx} - x = 2 \tan^{- 1} x\]

\[\frac{dy}{dx} = x e^x - \frac{5}{2} + \cos^2 x\]

\[\frac{dy}{dx} = \frac{1 - \cos 2y}{1 + \cos 2y}\]

dy + (x + 1) (y + 1) dx = 0


Solve the following differential equation:
\[y\left( 1 - x^2 \right)\frac{dy}{dx} = x\left( 1 + y^2 \right)\]

 


\[\frac{dy}{dx} = 1 + x + y^2 + x y^2\] when y = 0, x = 0

Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.


In a bank principal increases at the rate of r% per year. Find the value of r if ₹100 double itself in 10 years (loge 2 = 0.6931).


In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).


In a culture the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present.


\[x\frac{dy}{dx} = x + y\]

\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]


\[x\frac{dy}{dx} = y - x \cos^2 \left( \frac{y}{x} \right)\]

Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.

 


Solve the following initial value problem:
\[x\frac{dy}{dx} + y = x \cos x + \sin x, y\left( \frac{\pi}{2} \right) = 1\]


Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]


The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.


A bank pays interest by continuous compounding, that is, by treating the interest rate as the instantaneous rate of change of principal. Suppose in an account interest accrues at 8% per year, compounded continuously. Calculate the percentage increase in such an account over one year.


The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution


Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]


Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.


In each of the following examples, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
y = ex  `dy/ dx= y`

Solve the following differential equation.

dr + (2r)dθ= 8dθ


 `dy/dx = log x`


y dx – x dy + log x dx = 0


The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______


Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.


The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×