English

In a Culture the Bacteria Count is 100000. the Number is Increased by 10% in 2 Hours. in How Many Hours Will the Count Reach 200000, If the Rate of Growth O - Mathematics

Advertisements
Advertisements

Question

In a culture the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present.

Solution

Let at any time the bacteria count be N . 
\[\text{ Given: }\]
\[\frac{dN}{dt}\alpha \text{ N }\]
\[ \Rightarrow \frac{dN}{dt} = \lambda N\]
\[ \Rightarrow \frac{1}{N}dN = \lambda dt\]
Integrating both sides, we get
\[\int\frac{1}{N}dN = \int\lambda dt\]
\[ \Rightarrow \ln N = \lambda t + \ln C . . . (1)\]
Given: 
\[\text{ at }t = 0, N = 100000\]
\[\text{therefore, }\ln C = \ln 100000\]
Putting the value in (1) we get, 
\[\ln N = \lambda t + \ln 100000\]
Also, at t = 2
\[N = 110000\]
Putting the values of t and N in (1), we get
\[\ln 110000 = 2\lambda + \ln 100000\]
\[ \Rightarrow \frac{1}{2}\ln \frac{11}{10} = \lambda\]
\[\text{ Substituting the values of }\ln C \text{ and }\lambda \text{ in (1), we get }\]
\[\ln N = \frac{1}{2}\ln \left( \frac{11}{10} \right)t + \ln 100000 . . . . (2)\]
\[\text{ When }N = 200000, \text{ let }t = T . \]
Substituting these values in (2), we get 
\[\ln 200000 = \frac{T}{2}\ln \left( \frac{11}{10} \right) + \ln 100000\]
\[ \Rightarrow \ln 2 = \frac{T}{2}\ln \frac{11}{10}\]
\[ \Rightarrow T = 2\frac{\ln 2}{\ln \frac{11}{10}}\]
\[\text{ Therefore, in }2\frac{\ln 2}{\ln \frac{11}{10}}\text{ hours, the count will reach }200000 .\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.07 [Page 57]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.07 | Q 57 | Page 57

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Solve the equation for x: `sin^(-1)  5/x + sin^(-1)  12/x = pi/2, x != 0`


Verify that y2 = 4ax is a solution of the differential equation y = x \[\frac{dy}{dx} + a\frac{dx}{dy}\]


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} = y\]
y = ax

Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x


Differential equation \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 3\] Function y = ex + e2x


\[\left( x + 2 \right)\frac{dy}{dx} = x^2 + 3x + 7\]

(sin x + cos x) dy + (cos x − sin x) dx = 0


xy dy = (y − 1) (x + 1) dx


\[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\]

(1 − x2) dy + xy dx = xy2 dx


\[\frac{dy}{dx} + \frac{\cos x \sin y}{\cos y} = 0\]

\[\frac{dy}{dx} = 1 - x + y - xy\]

(y2 + 1) dx − (x2 + 1) dy = 0


Solve the following differential equation: 
(xy2 + 2x) dx + (x2 y + 2y) dy = 0


Solve the following differential equation:
\[y\left( 1 - x^2 \right)\frac{dy}{dx} = x\left( 1 + y^2 \right)\]

 


Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.


The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after `t` seconds.


Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.


\[\frac{dy}{dx} = \tan\left( x + y \right)\]

\[\frac{dy}{dx} = \frac{x + y}{x - y}\]

The rate of growth of a population is proportional to the number present. If the population of a city doubled in the past 25 years, and the present population is 100000, when will the city have a population of 500000?


If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.

 

The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by


The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by


The differential equation
\[\frac{dy}{dx} + Py = Q y^n , n > 2\] can be reduced to linear form by substituting


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y = ex + 1            y'' − y' = 0


The price of six different commodities for years 2009 and year 2011 are as follows: 

Commodities A B C D E F

Price in 2009 (₹)

35 80 25 30 80 x
Price in 2011 (₹) 50 y 45 70 120 105

The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.


Solve the following differential equation.

y dx + (x - y2 ) dy = 0


Solve the following differential equation.

`(x + a) dy/dx = – y + a`


Solve the differential equation `("d"y)/("d"x) + y` = e−x 


Solve: `("d"y)/("d"x) + 2/xy` = x2 


Choose the correct alternative:

General solution of `y - x ("d"y)/("d"x)` = 0 is


The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.


Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.


Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.


Solution of `x("d"y)/("d"x) = y + x tan  y/x` is `sin(y/x)` = cx


There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?


A man is moving away from a tower 41.6 m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×