Advertisements
Advertisements
Question
Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.
Solution
Given equation is `"dy"/"dx"` = e–2y
⇒ `"dy"/"e"^(-2y)` = dx
⇒ `"e"^(2y) * "d"y` = dx
Integrating both sides, we get
`int "e"^(2y) "d"y = int "d"x`
⇒ `1/2 "e"^(2y)` = x + c
Put y = 0 and x = 5
⇒ `1/2 "e"^0` = 5 + c
⇒ c = `1/2 - 5 = - 9/2`
Now putting y = 3, we get
`1/2 "e"^6 = x - 9/2`
⇒ x = `1/2 "e"^6 + 9/2`
Hence the required value of x =`1/2 ("e"^6 + 9)`.
APPEARS IN
RELATED QUESTIONS
Verify that y = log \[\left( x + \sqrt{x^2 + a^2} \right)^2\] satisfies the differential equation \[\left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 0\]
Differential equation \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 3\] Function y = ex + e2x
(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0
dy + (x + 1) (y + 1) dx = 0
Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]
In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).
In a culture the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present.
x2 dy + y (x + y) dx = 0
Solve the following initial value problem:-
\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]
Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \log x, y\left( 1 \right) = 0\]
Solve the following initial value problem:-
\[\frac{dy}{dx} - 3y \cot x = \sin 2x; y = 2\text{ when }x = \frac{\pi}{2}\]
Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\] and tangent at any point of which makes an angle tan−1 \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.
Find the equation of the curve passing through the point (0, 1) if the slope of the tangent to the curve at each of its point is equal to the sum of the abscissa and the product of the abscissa and the ordinate of the point.
Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.
Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]
Choose the correct option from the given alternatives:
The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = xn | `x^2(d^2y)/dx^2 - n xx (xdy)/dx + ny =0` |
Find the differential equation whose general solution is
x3 + y3 = 35ax.
Solve the following differential equation.
`(x + a) dy/dx = – y + a`
Choose the correct alternative.
The differential equation of y = `k_1 + k_2/x` is
The solution of `dy/dx + x^2/y^2 = 0` is ______
`dy/dx = log x`
The function y = ex is solution ______ of differential equation
An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.
The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0