English

(1 + X) (1 + Y2) Dx + (1 + Y) (1 + X2) Dy = 0 - Mathematics

Advertisements
Advertisements

Question

(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0

Solution

We have, 
\[\left( 1 + x \right)\left( 1 + y^2 \right) dx + \left( 1 + y \right)\left( 1 + x^2 \right)dy = 0\]
\[ \Rightarrow \left( 1 + x \right)\left( 1 + y^2 \right) dx = - \left( 1 + y \right)\left( 1 + x^2 \right)dy\]
\[ \Rightarrow \frac{1 + x}{1 + x^2}dx = - \frac{1 + y}{1 + y^2}dy\]
Integarting both sides, we get
\[\int\frac{1 + x}{1 + x^2}dx = - \int\frac{1 + y}{1 + y^2}dy\]
\[ \Rightarrow \int\frac{1}{1 + x^2}dx + \int\frac{x}{1 + x^2}dx = - \int\frac{1}{1 + y^2}dy - \int\frac{y}{1 + y^2}dy\]
\[\text{ Substituting }1 + x^2 = t \text{ in the second integral of LHS and }1 + y^2 = u\text{ in the second integral of RHS, we get }\]
\[2x dx = dt\text{ and }2ydy = du\]
\[ \therefore \int\frac{1}{1 + x^2}dx + \frac{1}{2}\int\frac{1}{t}dt = - \int\frac{1}{1 + y^2}dy - \frac{1}{2}\int\frac{1}{u}du\]
\[ \Rightarrow \tan^{- 1} x + \frac{1}{2}\log \left| t \right| = - \tan^{- 1} y - \frac{1}{2}\log \left| u \right| + C\]
\[ \Rightarrow \tan^{- 1} x + \frac{1}{2}\log \left| 1 + x^2 \right| = - \tan^{- 1} y - \frac{1}{2}\log \left| 1 + y^2 \right| + C\]
\[ \Rightarrow \tan^{- 1} x + \tan^{- 1} y + \frac{1}{2}\log \left| 1 + x^2 \right| + \frac{1}{2}\log \left| 1 + y^2 \right| = C\]
\[ \Rightarrow \tan^{- 1} x + \tan^{- 1} y + \frac{1}{2}\log \left| \left( 1 + x^2 \right)\left( 1 + y^2 \right) \right| = C\]
\[\text{ Hence, }\tan^{- 1} x + \tan^{- 1} y + \frac{1}{2}\log \left| \left( 1 + x^2 \right)\left( 1 + y^2 \right) \right| =\text{ C is the required solution }.\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.07 [Page 55]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.07 | Q 23 | Page 55

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

If 1, `omega` and `omega^2` are the cube roots of unity, prove `(a + b omega + c omega^2)/(c + s omega +  b omega^2) =  omega^2`


\[\left( \frac{dy}{dx} \right)^2 + \frac{1}{dy/dx} = 2\]

\[\frac{d^4 y}{d x^4} = \left\{ c + \left( \frac{dy}{dx} \right)^2 \right\}^{3/2}\]

Verify that y2 = 4a (x + a) is a solution of the differential equations
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} + y = y^2\]
\[y = \frac{a}{x + a}\]

\[x\frac{dy}{dx} + 1 = 0 ; y \left( - 1 \right) = 0\]

\[\frac{dy}{dx} = \frac{1 - \cos 2y}{1 + \cos 2y}\]

\[\frac{dy}{dx} = \left( e^x + 1 \right) y\]

\[x\frac{dy}{dx} + y = y^2\]

\[y\sqrt{1 + x^2} + x\sqrt{1 + y^2}\frac{dy}{dx} = 0\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

\[\frac{dy}{dx} = e^{x + y} + e^{- x + y}\]

\[xy\frac{dy}{dx} = y + 2, y\left( 2 \right) = 0\]

\[\cos y\frac{dy}{dx} = e^x , y\left( 0 \right) = \frac{\pi}{2}\]

\[\frac{dy}{dx} = \tan\left( x + y \right)\]

x2 dy + y (x + y) dx = 0


A population grows at the rate of 5% per year. How long does it take for the population to double?


In a culture, the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?


Write the differential equation obtained by eliminating the arbitrary constant C in the equation x2 − y2 = C2.


If sin x is an integrating factor of the differential equation \[\frac{dy}{dx} + Py = Q\], then write the value of P.


The solution of the differential equation y1 y3 = y22 is


Which of the following transformations reduce the differential equation \[\frac{dz}{dx} + \frac{z}{x}\log z = \frac{z}{x^2} \left( \log z \right)^2\] into the form \[\frac{du}{dx} + P\left( x \right) u = Q\left( x \right)\]


Which of the following is the integrating factor of (x log x) \[\frac{dy}{dx} + y\] = 2 log x?


Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].


Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]


Form the differential equation of the family of circles having centre on y-axis and radius 3 unit.


Solve the differential equation:

`"x"("dy")/("dx")+"y"=3"x"^2-2`


The price of six different commodities for years 2009 and year 2011 are as follows: 

Commodities A B C D E F

Price in 2009 (₹)

35 80 25 30 80 x
Price in 2011 (₹) 50 y 45 70 120 105

The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.


For each of the following differential equations find the particular solution.

(x − y2 x) dx − (y + x2 y) dy = 0, when x = 2, y = 0


Solve the following differential equation.

xdx + 2y dx = 0


Solve the differential equation:

dr = a r dθ − θ dr


x2y dx – (x3 + y3) dy = 0


Select and write the correct alternative from the given option for the question

Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in


Solve the following differential equation

`yx ("d"y)/("d"x)` = x2 + 2y2 


Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0


Find the particular solution of the following differential equation

`("d"y)/("d"x)` = e2y cos x, when x = `pi/6`, y = 0.

Solution: The given D.E. is `("d"y)/("d"x)` = e2y cos x

∴ `1/"e"^(2y)  "d"y` = cos x dx

Integrating, we get

`int square  "d"y` = cos x dx

∴ `("e"^(-2y))/(-2)` = sin x + c1

∴ e–2y = – 2sin x – 2c1

∴ `square` = c, where c = – 2c

This is general solution.

When x = `pi/6`, y = 0, we have

`"e"^0 + 2sin  pi/6` = c

∴ c = `square`

∴ particular solution is `square`


Solution of `x("d"y)/("d"x) = y + x tan  y/x` is `sin(y/x)` = cx


If `y = log_2 log_2(x)` then `(dy)/(dx)` =


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×