मराठी

(1 + X) (1 + Y2) Dx + (1 + Y) (1 + X2) Dy = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0

उत्तर

We have, 
\[\left( 1 + x \right)\left( 1 + y^2 \right) dx + \left( 1 + y \right)\left( 1 + x^2 \right)dy = 0\]
\[ \Rightarrow \left( 1 + x \right)\left( 1 + y^2 \right) dx = - \left( 1 + y \right)\left( 1 + x^2 \right)dy\]
\[ \Rightarrow \frac{1 + x}{1 + x^2}dx = - \frac{1 + y}{1 + y^2}dy\]
Integarting both sides, we get
\[\int\frac{1 + x}{1 + x^2}dx = - \int\frac{1 + y}{1 + y^2}dy\]
\[ \Rightarrow \int\frac{1}{1 + x^2}dx + \int\frac{x}{1 + x^2}dx = - \int\frac{1}{1 + y^2}dy - \int\frac{y}{1 + y^2}dy\]
\[\text{ Substituting }1 + x^2 = t \text{ in the second integral of LHS and }1 + y^2 = u\text{ in the second integral of RHS, we get }\]
\[2x dx = dt\text{ and }2ydy = du\]
\[ \therefore \int\frac{1}{1 + x^2}dx + \frac{1}{2}\int\frac{1}{t}dt = - \int\frac{1}{1 + y^2}dy - \frac{1}{2}\int\frac{1}{u}du\]
\[ \Rightarrow \tan^{- 1} x + \frac{1}{2}\log \left| t \right| = - \tan^{- 1} y - \frac{1}{2}\log \left| u \right| + C\]
\[ \Rightarrow \tan^{- 1} x + \frac{1}{2}\log \left| 1 + x^2 \right| = - \tan^{- 1} y - \frac{1}{2}\log \left| 1 + y^2 \right| + C\]
\[ \Rightarrow \tan^{- 1} x + \tan^{- 1} y + \frac{1}{2}\log \left| 1 + x^2 \right| + \frac{1}{2}\log \left| 1 + y^2 \right| = C\]
\[ \Rightarrow \tan^{- 1} x + \tan^{- 1} y + \frac{1}{2}\log \left| \left( 1 + x^2 \right)\left( 1 + y^2 \right) \right| = C\]
\[\text{ Hence, }\tan^{- 1} x + \tan^{- 1} y + \frac{1}{2}\log \left| \left( 1 + x^2 \right)\left( 1 + y^2 \right) \right| =\text{ C is the required solution }.\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.07 [पृष्ठ ५५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.07 | Q 23 | पृष्ठ ५५

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} = y\]
y = ax

Differential equation \[\frac{dy}{dx} = y, y\left( 0 \right) = 1\]
Function y = ex


Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2


\[\frac{1}{x}\frac{dy}{dx} = \tan^{- 1} x, x \neq 0\]

(1 + x2) dy = xy dx


\[\frac{dy}{dx} = \frac{x e^x \log x + e^x}{x \cos y}\]

\[\frac{dy}{dx} = e^{x + y} + e^y x^3\]

\[\frac{dy}{dx} + \frac{\cos x \sin y}{\cos y} = 0\]

\[\frac{dy}{dx} = \left( \cos^2 x - \sin^2 x \right) \cos^2 y\]

Solve the following differential equation: 
(xy2 + 2x) dx + (x2 y + 2y) dy = 0


Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]


\[\frac{dy}{dx} = y \tan 2x, y\left( 0 \right) = 2\] 

Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\]  given that y = 1, when x = 0.


\[\left( x + y \right)^2 \frac{dy}{dx} = 1\]

\[xy\frac{dy}{dx} = x^2 - y^2\]

(y2 − 2xy) dx = (x2 − 2xy) dy


Solve the following initial value problem:-

\[\frac{dy}{dx} - 3y \cot x = \sin 2x; y = 2\text{ when }x = \frac{\pi}{2}\]


In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]


Find the equation of the curve which passes through the origin and has the slope x + 3y− 1 at any point (x, y) on it.


A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.


Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.


Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.


Which of the following transformations reduce the differential equation \[\frac{dz}{dx} + \frac{z}{x}\log z = \frac{z}{x^2} \left( \log z \right)^2\] into the form \[\frac{du}{dx} + P\left( x \right) u = Q\left( x \right)\]


The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution


Solve the following differential equation.

y dx + (x - y2 ) dy = 0


Solve the following differential equation.

`dy/dx + 2xy = x`


Solve the following differential equation.

dr + (2r)dθ= 8dθ


The solution of `dy/dx + x^2/y^2 = 0` is ______


y dx – x dy + log x dx = 0


Solve the differential equation `("d"y)/("d"x) + y` = e−x 


Solve the following differential equation

`yx ("d"y)/("d"x)` = x2 + 2y2 


For the differential equation, find the particular solution

`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0


A solution of differential equation which can be obtained from the general solution by giving particular values to the arbitrary constant is called ______ solution


Solve the following differential equation 

sec2 x tan y dx + sec2 y tan x dy = 0

Solution: sec2 x tan y dx + sec2 y tan x dy = 0

∴ `(sec^2x)/tanx  "d"x + square` = 0

Integrating, we get

`square + int (sec^2y)/tany  "d"y` = log c

Each of these integral is of the type

`int ("f'"(x))/("f"(x))  "d"x` = log |f(x)| + log c

∴ the general solution is

`square + log |tan y|` = log c

∴ log |tan x . tan y| = log c

`square`

This is the general solution.


Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.


The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0


If `y = log_2 log_2(x)` then `(dy)/(dx)` =


The value of `dy/dx` if y = |x – 1| + |x – 4| at x = 3 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×