मराठी

D Y D X + Cos X Sin Y Cos Y = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{dy}{dx} + \frac{\cos x \sin y}{\cos y} = 0\]

उत्तर

We have,
\[\frac{dy}{dx} + \frac{\cos x \sin y}{\cos y} = 0\]
\[ \Rightarrow \frac{dy}{dx} = - \frac{\cos x \sin y}{\cos y}\]
\[ \Rightarrow \frac{\cos y}{\sin y}dy = - \cos x dx\]
\[ \Rightarrow \cot y dy = - \cos x dx\]
Integrating both sides, we get
\[\int\cot y dy = - \int\cos x dx\]
\[ \Rightarrow \log \left| \sin y \right| = - \sin x + C\]
\[\text{ Hence,} \log \left| \sin y \right| = - \sin x +\text{ C is the required solution .} \]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.07 [पृष्ठ ५५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.07 | Q 26 | पृष्ठ ५५

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

\[\frac{d^2 y}{d x^2} + 4y = 0\]

\[x^2 \left( \frac{d^2 y}{d x^2} \right)^3 + y \left( \frac{dy}{dx} \right)^4 + y^4 = 0\]

Verify that y2 = 4a (x + a) is a solution of the differential equations
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]


Verify that y = log \[\left( x + \sqrt{x^2 + a^2} \right)^2\]  satisfies the differential equation \[\left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 0\]


Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]

 


\[\frac{dy}{dx} = x \log x\]

\[\frac{dy}{dx} = \left( e^x + 1 \right) y\]

xy (y + 1) dy = (x2 + 1) dx


\[y\sqrt{1 + x^2} + x\sqrt{1 + y^2}\frac{dy}{dx} = 0\]

Solve the following differential equation:
\[y e^\frac{x}{y} dx = \left( x e^\frac{x}{y} + y^2 \right)dy, y \neq 0\]

 


\[xy\frac{dy}{dx} = y + 2, y\left( 2 \right) = 0\]

\[\frac{dr}{dt} = - rt, r\left( 0 \right) = r_0\]

\[\frac{dy}{dx} = 1 + x^2 + y^2 + x^2 y^2 , y\left( 0 \right) = 1\]

Solve the differential equation \[x\frac{dy}{dx} + \cot y = 0\] given that \[y = \frac{\pi}{4}\], when \[x=\sqrt{2}\]


The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after `t` seconds.


\[\left( x + y \right)^2 \frac{dy}{dx} = 1\]

(x + y) (dx − dy) = dx + dy


\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]

 

Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y = e^{- 2x} \sin x, y\left( 0 \right) = 0\]


If the interest is compounded continuously at 6% per annum, how much worth Rs 1000 will be after 10 years? How long will it take to double Rs 1000?


Find the equation to the curve satisfying x (x + 1) \[\frac{dy}{dx} - y\]  = x (x + 1) and passing through (1, 0).


A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.


Find the equation of the curve which passes through the point (1, 2) and the distance between the foot of the ordinate of the point of contact and the point of intersection of the tangent with x-axis is twice the abscissa of the point of contact.


The slope of the tangent at each point of a curve is equal to the sum of the coordinates of the point. Find the curve that passes through the origin.


Find the equation of the curve passing through the point (0, 1) if the slope of the tangent to the curve at each of its point is equal to the sum of the abscissa and the product of the abscissa and the ordinate of the point.


The differential equation of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C\] is


The differential equation satisfied by ax2 + by2 = 1 is


y2 dx + (x2 − xy + y2) dy = 0


Find the differential equation whose general solution is

x3 + y3 = 35ax.


Solve the following differential equation.

`y^3 - dy/dx = x dy/dx`


For the following differential equation find the particular solution.

`(x + 1) dy/dx − 1 = 2e^(−y)`,

when y = 0, x = 1


Solve the following differential equation.

y2 dx + (xy + x2 ) dy = 0


Choose the correct alternative.

The solution of `x dy/dx = y` log y is


Verify y = `a + b/x` is solution of `x(d^2y)/(dx^2) + 2 (dy)/(dx)` = 0

y = `a + b/x`

`(dy)/(dx) = square`

`(d^2y)/(dx^2) = square`

Consider `x(d^2y)/(dx^2) + 2(dy)/(dx)`

= `x square + 2 square`

= `square`

Hence y = `a + b/x` is solution of `square`


Solve the following differential equation 

sec2 x tan y dx + sec2 y tan x dy = 0

Solution: sec2 x tan y dx + sec2 y tan x dy = 0

∴ `(sec^2x)/tanx  "d"x + square` = 0

Integrating, we get

`square + int (sec^2y)/tany  "d"y` = log c

Each of these integral is of the type

`int ("f'"(x))/("f"(x))  "d"x` = log |f(x)| + log c

∴ the general solution is

`square + log |tan y|` = log c

∴ log |tan x . tan y| = log c

`square`

This is the general solution.


The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.


Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.


A man is moving away from a tower 41.6 m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is


Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×