Advertisements
Advertisements
प्रश्न
The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.
पर्याय
ex
log x
log (log x)
x
उत्तर
The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is log x.
Explanation:
Given equation can be written as `"dy"/"dx" + y/(xlogx) = 2/x`.
Therefore, I.F. = `"e"^(int 1/(xlogx) "d"x)`
= `"e"^(log (logx))`
= log x.
APPEARS IN
संबंधित प्रश्न
Show that y = AeBx is a solution of the differential equation
Verify that y2 = 4ax is a solution of the differential equation y = x \[\frac{dy}{dx} + a\frac{dx}{dy}\]
Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]
Show that the differential equation of which \[y = 2\left( x^2 - 1 \right) + c e^{- x^2}\] is a solution is \[\frac{dy}{dx} + 2xy = 4 x^3\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x + y\frac{dy}{dx} = 0\]
|
\[y = \pm \sqrt{a^2 - x^2}\]
|
Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\]
Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.
Solve the following initial value problem:-
\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]
Solve the following initial value problem:-
\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]
The tangent at any point (x, y) of a curve makes an angle tan−1(2x + 3y) with x-axis. Find the equation of the curve if it passes through (1, 2).
Find the equation of the curve passing through the point (0, 1) if the slope of the tangent to the curve at each of its point is equal to the sum of the abscissa and the product of the abscissa and the ordinate of the point.
Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.
The solution of the differential equation y1 y3 = y22 is
The integrating factor of the differential equation \[x\frac{dy}{dx} - y = 2 x^2\]
y2 dx + (x2 − xy + y2) dy = 0
Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2).
Find the particular solution of the differential equation `"dy"/"dx" = "xy"/("x"^2+"y"^2),`given that y = 1 when x = 0
A solution of a differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called ___________ solution.
`dy/dx = log x`
Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`
The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`
Solve the differential equation `"dy"/"dx" + 2xy` = y
Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.