Advertisements
Advertisements
प्रश्न
Verify that y2 = 4ax is a solution of the differential equation y = x \[\frac{dy}{dx} + a\frac{dx}{dy}\]
उत्तर
We have, \[y^2 = 4ax ...........(1)\]
Differentiating both sides of (1) with respect to x, we get
\[2y\frac{dy}{dx} = 4a\]
⇒ \[\frac{dy}{dx} = \frac{2a}{y} ...........(2)\]
Now, differentiating both sides of (1) with respect to y, we get
\[2y = 4a\frac{dx}{dy}\]
⇒ \[\frac{dx}{dy} = \frac{y}{2a}..............(3)\]
\[\therefore x\frac{dy}{dx} + a\frac{dx}{dy} = x\left( \frac{2a}{y} \right) + a\left( \frac{y}{2a} \right) ..........\left[\text{Using (2) and (3)}\right]\]
\[ \Rightarrow x\frac{dy}{dx} + a\frac{dx}{dy} = \frac{2ax}{y} + \frac{y}{2}\]
\[ \Rightarrow x\frac{dy}{dx} + a\frac{dx}{dy} = \frac{y^2}{2y} + \frac{y}{2} ..........\left[\text{Using (1)}\right]\]
\[ \Rightarrow x\frac{dy}{dx} + a\frac{dx}{dy} = \frac{y}{2} + \frac{y}{2}\]
\[ \Rightarrow x\frac{dy}{dx} + a\frac{dx}{dy} = y\]
\[\Rightarrow y = x\frac{dy}{dx} + a\frac{dx}{dy}\]
Hence, the given function is the solution to the given differential equation.
APPEARS IN
संबंधित प्रश्न
Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.
Show that the differential equation of which y = 2(x2 − 1) + \[c e^{- x^2}\] is a solution, is \[\frac{dy}{dx} + 2xy = 4 x^3\]
Verify that y = 4 sin 3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 9y = 0\]
Show that the function y = A cos 2x − B sin 2x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 4y = 0\].
(sin x + cos x) dy + (cos x − sin x) dx = 0
x cos y dy = (xex log x + ex) dx
If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).
The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given the number triples in 5 hrs, find how many bacteria will be present after 10 hours. Also find the time necessary for the number of bacteria to be 10 times the number of initial present.
Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?
Find the equation of the curve which passes through the point (2, 2) and satisfies the differential equation
\[y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}\]
Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.
Find the equation of the curve such that the portion of the x-axis cut off between the origin and the tangent at a point is twice the abscissa and which passes through the point (1, 2).
Find the equation of the curve which passes through the point (1, 2) and the distance between the foot of the ordinate of the point of contact and the point of intersection of the tangent with x-axis is twice the abscissa of the point of contact.
The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.
Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of radium to decompose?
Form the differential equation of the family of circles having centre on y-axis and radius 3 unit.
Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.
State whether the following is True or False:
The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.
`xy dy/dx = x^2 + 2y^2`
Select and write the correct alternative from the given option for the question
Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in
Select and write the correct alternative from the given option for the question
Differential equation of the function c + 4yx = 0 is
For the differential equation, find the particular solution
`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0
Solve the following differential equation y2dx + (xy + x2) dy = 0
Choose the correct alternative:
Solution of the equation `x("d"y)/("d"x)` = y log y is
The function y = ex is solution ______ of differential equation
An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.