Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[\frac{dy}{dx} = \tan\left( x + y \right)\]
\[\frac{dy}{dx} = \frac{\sin\left( x + y \right)}{\cos\left( x + y \right)}\]
Let x + y = v
\[ \therefore 1 + \frac{dy}{dx} = \frac{dv}{dx}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{dv}{dx} - 1\]
\[ \therefore \frac{dv}{dx} - 1 = \frac{\sin v}{\cos v}\]
\[ \Rightarrow \frac{dv}{dx} = \frac{\sin v}{\cos v} + 1\]
\[ \Rightarrow \frac{dv}{dx} = \frac{\sin v + \cos v}{\cos v}\]
\[ \Rightarrow \frac{\cos v}{\sin v + \cos v}dv = dx\]
Integrating both sides, we get
\[\int\frac{\cos v}{\sin v + \cos v}dv = \int dx\]
\[ \Rightarrow \frac{1}{2}\int\frac{\left( \sin v + \cos v \right) + \left( \cos v - \sin v \right)}{\sin v + \cos v}dv = \int dx\]
\[ \Rightarrow \frac{1}{2}\int dv + \frac{1}{2}\int\frac{\cos v - \sin v}{\sin v + \cos v}dv = \int dx\]
\[ \Rightarrow \frac{1}{2}v + \frac{1}{2}\int\frac{\cos v - \sin v}{\sin v + \cos v}dv = x\]
\[\text{ Putting }\sin v + \cos v = t\]
\[ \Rightarrow \left( \cos v - \sin v \right)dv = dt\]
\[ \therefore \frac{1}{2}v + \frac{1}{2}\int\frac{dt}{t} = x\]
\[ \Rightarrow \frac{1}{2}v + \frac{1}{2}\log \left| t \right| = x + C\]
\[ \Rightarrow \frac{1}{2}\left( x + y \right) + \frac{1}{2}\log \left| \sin \left( x + y \right) + \cos \left( x + y \right) \right| = x + C\]
\[ \Rightarrow \frac{1}{2}\left( y - x \right) + \frac{1}{2}\log \left| \sin \left( x + y \right) + \cos \left( x + y \right) \right| = C\]
\[ \Rightarrow \left( y - x \right) + \log \left| \sin \left( x + y \right) + \cos \left( x + y \right) \right| = 2C\]
\[ \Rightarrow y - x + \log \left| \sin \left( x + y \right) + \cos \left( x + y \right) \right| = K ...........\left(\text{where, }K = 2C \right)\]
APPEARS IN
संबंधित प्रश्न
Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2
(sin x + cos x) dy + (cos x − sin x) dx = 0
C' (x) = 2 + 0.15 x ; C(0) = 100
x cos2 y dx = y cos2 x dy
(y + xy) dx + (x − xy2) dy = 0
Solve the following differential equation:
(xy2 + 2x) dx + (x2 y + 2y) dy = 0
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.
Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \log x, y\left( 1 \right) = 0\]
The population of a city increases at a rate proportional to the number of inhabitants present at any time t. If the population of the city was 200000 in 1990 and 250000 in 2000, what will be the population in 2010?
Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\] and tangent at any point of which makes an angle tan−1 \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.
Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.
The normal to a given curve at each point (x, y) on the curve passes through the point (3, 0). If the curve contains the point (3, 4), find its equation.
Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]
The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by
The differential equation of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C\] is
The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution
Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].
If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
xy = log y + k | y' (1 - xy) = y2 |
Form the differential equation from the relation x2 + 4y2 = 4b2
For each of the following differential equations find the particular solution.
(x − y2 x) dx − (y + x2 y) dy = 0, when x = 2, y = 0
For the following differential equation find the particular solution.
`(x + 1) dy/dx − 1 = 2e^(−y)`,
when y = 0, x = 1
Solve the following differential equation.
`(x + y) dy/dx = 1`
The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.
State whether the following is True or False:
The integrating factor of the differential equation `dy/dx - y = x` is e-x
Solve the following differential equation `("d"y)/("d"x)` = x2y + y
A solution of differential equation which can be obtained from the general solution by giving particular values to the arbitrary constant is called ______ solution
The function y = ex is solution ______ of differential equation
Solve: ydx – xdy = x2ydx.
lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is
The differential equation (1 + y2)x dx – (1 + x2)y dy = 0 represents a family of: