मराठी

The Normal to a Given Curve at Each Point (X, Y) on the Curve Passes Through the Point (3, 0). If the Curve Contains the Point (3, 4), Find Its Equation. - Mathematics

Advertisements
Advertisements

प्रश्न

The normal to a given curve at each point (x, y) on the curve passes through the point (3, 0). If the curve contains the point (3, 4), find its equation.

उत्तर

Let P (x, y) be any point on the curve. The equation of the normal at P (x, y) to the given curve is given as \[Y - y = - \frac{1}{\frac{dy}{dx}}\left( X - x \right)\]

It is given that the curve passes through the point (3, 0). Then,
\[0 - y = - \frac{1}{\frac{dy}{dx}}\left( 3 - x \right)\]
\[ \Rightarrow - y = - \frac{1}{\frac{dy}{dx}}\left( 3 - x \right)\]
\[ \Rightarrow y\frac{dy}{dx} = 3 - x\]
\[ \Rightarrow y dy = \left( 3 - x \right)dx\]
\[ \Rightarrow \frac{y^2}{2} = 3x - \frac{x^2}{2} + C . . . . . \left( 1 \right)\]
\[\text{ Since the curve passes through the point }\left( 3, 4 \right), \text{ it satisfies the equation .} \]
\[ \Rightarrow \frac{4^2}{2} = 3\left( 3 \right) - \frac{3^2}{2} + C\]
\[ \Rightarrow C = 8 - 9 + \frac{9}{2}\]
\[ \Rightarrow C = \frac{9}{2} - 1 = \frac{7}{2}\]
\[\text{ Putting the value of C in }\left( 1 \right),\text{ we get }\]
\[\frac{y^2}{2} = 3x - \frac{x^2}{2} + \frac{7}{2}\]
\[ \Rightarrow y^2 = 6x - x^2 + 7\]
\[ \Rightarrow x^2 + y^2 - 6x - 7 = 0\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.11 [पृष्ठ १३५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.11 | Q 26 | पृष्ठ १३५

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Show that the differential equation of which y = 2(x2 − 1) + \[c e^{- x^2}\] is a solution, is \[\frac{dy}{dx} + 2xy = 4 x^3\]


Show that y = ax3 + bx2 + c is a solution of the differential equation \[\frac{d^3 y}{d x^3} = 6a\].

 


Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].


Differential equation \[\frac{dy}{dx} = y, y\left( 0 \right) = 1\]
Function y = ex


(sin x + cos x) dy + (cos x − sin x) dx = 0


\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

xy (y + 1) dy = (x2 + 1) dx


x cos2 y  dx = y cos2 x dy


\[y\sqrt{1 + x^2} + x\sqrt{1 + y^2}\frac{dy}{dx} = 0\]

\[\sqrt{1 + x^2 + y^2 + x^2 y^2} + xy\frac{dy}{dx} = 0\]

y (1 + ex) dy = (y + 1) ex dx


\[\frac{dy}{dx} = \left( \cos^2 x - \sin^2 x \right) \cos^2 y\]

Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]


Solve the following differential equation:
\[y e^\frac{x}{y} dx = \left( x e^\frac{x}{y} + y^2 \right)dy, y \neq 0\]

 


\[\frac{dy}{dx} = y \tan 2x, y\left( 0 \right) = 2\] 

\[\frac{dy}{dx} = y \sin 2x, y\left( 0 \right) = 1\]

\[\frac{dy}{dx} = 1 + x^2 + y^2 + x^2 y^2 , y\left( 0 \right) = 1\]

Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]


Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \log x, y\left( 1 \right) = 0\]


Solve the following initial value problem:-

\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]


The rate of growth of a population is proportional to the number present. If the population of a city doubled in the past 25 years, and the present population is 100000, when will the city have a population of 500000?


The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given the number triples in 5 hrs, find how many bacteria will be present after 10 hours. Also find the time necessary for the number of bacteria to be 10 times the number of initial present.


The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.


Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.


The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.


Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.


The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when


Solve the differential equation:

`"x"("dy")/("dx")+"y"=3"x"^2-2`


Find the differential equation whose general solution is

x3 + y3 = 35ax.


For  the following differential equation find the particular solution.

`dy/ dx = (4x + y + 1),

when  y = 1, x = 0


Choose the correct alternative.

The integrating factor of `dy/dx -  y = e^x `is ex, then its solution is


Solve:

(x + y) dy = a2 dx


Select and write the correct alternative from the given option for the question

Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in


Solve the following differential equation

`yx ("d"y)/("d"x)` = x2 + 2y2 


Choose the correct alternative:

Differential equation of the function c + 4yx = 0 is


The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`


Verify y = `a + b/x` is solution of `x(d^2y)/(dx^2) + 2 (dy)/(dx)` = 0

y = `a + b/x`

`(dy)/(dx) = square`

`(d^2y)/(dx^2) = square`

Consider `x(d^2y)/(dx^2) + 2(dy)/(dx)`

= `x square + 2 square`

= `square`

Hence y = `a + b/x` is solution of `square`


If `y = log_2 log_2(x)` then `(dy)/(dx)` =


Solve the differential equation

`y (dy)/(dx) + x` = 0


Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×